Diurnal and seasonal patterns of soil CO2 efflux from the Pichavaram mangroves, India

  • P. GnanamoorthyEmail author
  • V. Selvam
  • R. Ramasubramanian
  • R. Nagarajan
  • S. Chakraborty
  • Pramit Kumar Deb Burman
  • A. Karipot


The diurnal and seasonal variation of soil carbon dioxide (CO2) flux was measured in the Pichavaram mangrove forest, the Southeast coast of India from February 2016 to October 2016 using an automated soil CO2 flux chamber system. Maximum soil CO2 efflux reached at 14:00 h and minimum at 00:00 h. The surface soil CO2 concentration ranged from 375 to 532 ppm with the mean 405 ± 18 ppm. The daily soil CO2 flux varied from near zero to about 7 μmol m−2 s−1 with a mean value of 2.4 ± 1.3 μmol m−2 s−1. The highest seasonal CO2 efflux from soil was during the summer and premonsoon seasons, whereas low flux values were recorded during the monsoon season. Soil CO2 efflux values were highly correlated with soil temperature. Tidal inundation during monsoon season, extreme drought condition in summer, and unusual precipitation are the major factors controlling the soil CO2 flux.


Mangrove forest Tidal wetland Soil CO2 flux Carbon source Soil temperature 



The authors would like to thank the Tamil Nadu forest department for providing the necessary permission. We are grateful to the founder Chairman and Chairperson of MSSRF for providing facilities for this work.

Funding information

This study received funding from the Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Govt. of India, Pune, (CCCR/Fluxnet/VS/2015-16) and guidance under the METFLUX project.


  1. Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6, 195–219.CrossRefGoogle Scholar
  2. Alongi, D. M., Tirendi, F., Trott, L. A., & Xuan, T. T. (2000). Benthic decomposition rates and pathways in plantations of the mangrove Rhizophora apiculata in the Mekong delta, Vietnam. Marine Ecology Progress Series, 194, 87–101.CrossRefGoogle Scholar
  3. Alongi, D. M., Pfitzner, J., Trott, L. A., Tirendi, F., & Klumpp, D. W. (2005). Rapid sedimentation and microbial mineralization in mangrove forests of the Jiulongjiang estuary, China. Estuarine, Coastal and Shelf Science, 63, 605–618.Google Scholar
  4. AOAC. (1984). Official methods of analysis (14th ed.). Arlington: Association of Official Analytical Chemists.Google Scholar
  5. Borges, A. V., Djenidi, S., Lacroix, G., Théate, J., Delille, B., & Frankignoulle, M. (2003). Atmospheric CO2 flux from mangrove surrounding waters. Geophysical Research Letters, 30, 1558.CrossRefGoogle Scholar
  6. Bouillon, S., Borges, A. V., Castaneda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J., Rivera-Monroy, V. H., Smith, T. J., & Twilley, R. R. (2008). Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles, 22, GB2013.CrossRefGoogle Scholar
  7. Brown, S., Sathaye, J., Cannel, M., & Kauppi, P. (1996). Management of forests for mitigation of greenhouse gas emissions. In R. T. Watson, M. C. Zinyowera, & R. H. Moss (Eds.), Climate change 1995: impacts, adaptations, and mitigation of climate change: scientific-technical analyses, Chapter 24. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change (pp. 775–797). Cambridge: Cambridge University Press.Google Scholar
  8. Bulmer, R. H., Lundquist, C. J., & Schwendenmann, L. (2015). Sediment properties and CO efflux from intact and cleared temperate mangrove forests. Biogeosciences, 12, 6169–6180.Google Scholar
  9. Cabezas, A., Mitsch, W. J., MacDonnell, C., Zhang, L., Bydałek, F., & Lasso, A. (2017). Methane emissions from mangrove soils in hydrologically disturbed and reference mangrove tidal creeks in southwest Florida. Ecological Engineering, 114, 57–65. Scholar
  10. Cannell, M. G. R., & Dewar, R. C. (1994). Carbon allocation in trees—a review of concepts for modeling. Advances in Ecological Research, 25, 59–104.CrossRefGoogle Scholar
  11. Chanda, A., Akhand, A., Manna, S., Dutta, S., Das, I., Hazra, S., Rao, K. H., & Dadhwal, V. K. (2014). Measuring daytime CO2 fluxes from the inter-tidal mangrove soils of Indian Sundarbans. Environmental Earth Sciences, 72, 417–427.CrossRefGoogle Scholar
  12. Chen, G. C., Tam, N. F. Y., & Ye, Y. (2010). Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China. Science of the Total Environment, 408, 2761–2767.CrossRefGoogle Scholar
  13. Chen, G. C., Tam, N. F. Y., & Ye, Y. (2012). Spatial and seasonal variations of atmospheric N2O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics. Soil Biology and Biochemistry, 48, 175–181.CrossRefGoogle Scholar
  14. Chen, G. C., Ulumuddin, Y. I., Pramudji, S., Chen, Y. C., Chen, B., Ye, B. Y., Ou, D. Y., Ma, Z. Y., Huang, H., & Wang, J. K. (2014). Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia. Science of the Total Environment, 487, 91–96.CrossRefGoogle Scholar
  15. Das, S., Ganguly, D., Ray, R., Jana, T. K., & De, T. K. (2017). Microbial activity determining soil CO2 emission in the Sundarban mangrove forest, India. Journal of Tropical Ecology, 58, 525–537.Google Scholar
  16. Deb Burman, P. K., Sarma, D., Williams, M., Karipot, A., & Chakraborty, S. (2017). Estimating gross primary productivity of a tropical forest ecosystem over north-east India using LAI and meteorological variables. Journal of Earth System Science, 126, 1–16.CrossRefGoogle Scholar
  17. Decho, A. W. (2000). Microbial biofilms in intertidal systems: an overview. Continental Shelf Research, 20, 1257–1273.CrossRefGoogle Scholar
  18. Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangrove among the most carbon-rich forests in the tropics. Nature Geoscience, 4, 293–297.CrossRefGoogle Scholar
  19. Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., & Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961–968.CrossRefGoogle Scholar
  20. Gnanamoorthy, P., Selvam, V., Chakraborty, S., Pramit, D., & Karipot A. (2017). Eddy covariance measurements of carbon dioxide (CO2) exchange in Pichavaram Mangrove Ecosystem, Southeast Coast of India. Proceedings of International Forestry and Environment Symposium, Sri Lanka.
  21. Guo, Y., Song, C., Wang, L., Tan, W., Wang, X., Cui, Q., & Wan, Z. (2016). Concentrations, sources, and export of dissolved CH4 and CO2 in rivers of the permafrost wetlands, northeast China. Ecological Engineering, 90, 491–497.CrossRefGoogle Scholar
  22. Hien, H. T., Marchand, C., Aimé, J., & Cuc, N. T. K. (2018). Seasonal variability of CO2 emissions from sediments in planted mangroves (Northern VietNam), Estuarine. Coastal and Shelf Science, 213, 28–39. Scholar
  23. Hirota, M., Senga, Y., Seike, Y., Nohara, S., & Kunii, H. (2007). Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, lake Nakaumi, Japan. Chemosphere, 68, 597–603.Google Scholar
  24. Ho, D. T., Ferron, S., Enge, V. C., Larsen, L. G., & Barr, J. G. (2014). Air-water gas exchange and CO2 flux in a mangrove-dominated estuary. Geophysical Research Letters, 41, 108–113.CrossRefGoogle Scholar
  25. Huang, B., Yu, K., & Gambrell, R. P. (2009). Effects of ferric iron reduction and regeneration on nitrous oxide and methane emissions in a rice soil. Chemosphere, 74, 481–486.CrossRefGoogle Scholar
  26. IPCC. (2013). Climate change 2013: the physical science basis (Contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change). Cambridge: Cambridge University Press.Google Scholar
  27. Janssens, I. A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G. J., Folberth, G., Schlamadinger, B., Hutjes, R. W. A., Ceulemans, R., Schulze, E. D., Valentini, R., & Dolman, A. J. (2003). Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science, 300, 1538–1542.CrossRefGoogle Scholar
  28. Jennerjahn, T. C., & Ittekkot, V. (2002). Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. The Science of Nature, 89, 23–30.CrossRefGoogle Scholar
  29. Jin, L., Lu, C. Y., Ye, Y., & Ye, G. F. (2013). Soil respiration in a subtropical mangrove wetland in the Jiulong River estuary, China. Pedosphere, 23, 678–685.CrossRefGoogle Scholar
  30. Kathiresan, K. (2000). A review of studies on Pichavaram mangrove, Southeast India. Hydrobiologia, 430, 185–205.CrossRefGoogle Scholar
  31. Kauffman, J. B., & Donato, D. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests; Working Paper 86 (p. 40). Bogor: CIFOR.Google Scholar
  32. Khan, S. A., Ramachandran, A., Usha, N., Punitha, S., & Selvam, V. (2012). Predicted impact of the sea-level rise at Vellar Coleroon estuarine region of Tamil Nadu coast in India: Mainstreaming adaptation as a coastal zone management option. Ocean & Coastal Management, 69, 327–339.CrossRefGoogle Scholar
  33. Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany, 89, 201–219.CrossRefGoogle Scholar
  34. Krumbein, W. C., & Pettijohn, F. J. (1938). Manual of sedimentary petrography (549 p). New York: Appleton Century Crofts.Google Scholar
  35. Lang'at, J. K. S., Kairo, J. G., Mencuccini, M., Bouillon, S., Skov, M. W., Waldron, S., & Huxham, M. (2014). Rapid losses of surface elevation following tree girdling and cutting in tropical mangroves. PLoS One, 9, 8.CrossRefGoogle Scholar
  36. Leopold, A., Marchand, C., Deborde, J., Chaduteau, C., & Allenbach, M. (2013). Influence of mangrove zonation on CO2 fluxes at the sediment-air interface (New Caledonia). Geoderma, 202, 62–70.CrossRefGoogle Scholar
  37. Leopold, A., Marchand, C., Deborde, J., & Allenbach, M. (2015). Temporal variability of CO2 fluxes at the sediment-air interface in mangroves (New Caledonia). Science of the Total Environment, 502, 617–626.CrossRefGoogle Scholar
  38. Lloyd, J., & Taylor, J. A. (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315–323.CrossRefGoogle Scholar
  39. Lovelock, C. E. (2008). Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems, 11, 342–354.CrossRefGoogle Scholar
  40. Myhre, G., et al. (2013). In T. F. Stocker et al. (Eds.), In climate change 2013: the physical science basis (pp. 659–740). Cambridge: IPCC, Cambridge Univ. Press.Google Scholar
  41. Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U. S. Department of Agriculture Circular No. 939. In A. D. Banderis, D. H. Barter, & K. Anderson. Agricultural and Advisor.Google Scholar
  42. Purvaja, R., & Ramesh, R. (2000). Human impacts on methane emission from mangrove ecosystems in India. Regional Environmental Change, 1, 86–97.CrossRefGoogle Scholar
  43. Purvaja, R., & Ramesh, R. (2001). Natural and anthropogenic methane emission from coastal wetlands of South India. Environmental Management, 27, 547–557.CrossRefGoogle Scholar
  44. Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., & Guth, P. (2013). Global carbon dioxide emissions from inland waters. Nature, 503, 355–359.CrossRefGoogle Scholar
  45. Rhee, J. S., & Iamchaturapatr, J. (2009). Carbon capture and sequestration by a treatment wetland. Ecological Engineering, 35, 393–401.CrossRefGoogle Scholar
  46. Selvam, V. (2003). Environmental classification of mangrove wetlands of India. Current Science, 84, 759–765.Google Scholar
  47. Selvam, V., Gnanappazham, L., Navamuniyammal, M., Ravichandran, K. K., & Karunagaram, V. M. (2002). Atlas of mangrove wetlands of India (pp. 12–58). Chennai: M.S. Swaminathan Research Foundation.Google Scholar
  48. Sidik, F., & Lovelock, C. E. (2013). CO2 efflux from shrimp ponds in Indonesia. PLoS One, 8, e66329.CrossRefGoogle Scholar
  49. Thompson, R. L., Patra, P. K., Chevallier, F., Maksyutov, S., Law, R. M., Ziehn, T., van der Laan-Luijkx, I. T., Peters, W., Ganshin, A., Zhuravlev, R., Maki, T., Nakamura, T., Shirai, T., Ishizawa, M., Saeki, T., Poulter, B., Canadell, J. G., & Ciais, P. (2016). Top-down assessment of the Asian carbon budget since the mid 1990s. Nature Communications, 7, 10724.CrossRefGoogle Scholar
  50. Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid tritation method. Soil Science., 37, 29–38.CrossRefGoogle Scholar
  51. Wang, D., Chen, Z., Wang, J., Xu, S., Yang, H., Chen, H., & Yang, L. (2007). Fluxes of CH4, CO2 and N2O from yangtze estuary intertidal flat in summer season. Geochimica, 36, 78–88 (in Chinese).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Coastal Systems ResearchM S Swaminathan Research FoundationChennaiIndia
  2. 2.Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglunChina
  3. 3.Indian Institute of Tropical MeteorologyMinistry of Earth Sciences, Govt. of IndiaPuneIndia
  4. 4.Department of Atmospheric and Space SciencesSavitribai Phule Pune UniversityPuneIndia

Personalised recommendations