Background element content in the lichen Pseudevernia furfuracea: a comparative analysis of digestion methods

  • Elva Cecconi
  • Guido Incerti
  • Fiore Capozzi
  • Paola Adamo
  • Roberto Bargagli
  • Renato Benesperi
  • Fabio Candotto Carniel
  • Sergio Enrico Favero-Longo
  • Simonetta Giordano
  • Domenico Puntillo
  • Sonia Ravera
  • Valeria Spagnuolo
  • Mauro TretiachEmail author


In bioaccumulation studies, the interpretation of pollutant contents in the target biomonitor has to be performed by assessing a deviation from an unaltered reference condition. A common strategy consists in the comparison with background element content (BEC) values, often built up by uncritically merging methodologically heterogeneous data. In this respect, the acid digestion of samples was identified as a major step affecting BEC data. Here, the analytical outcomes of two acid mixtures were compared on a set of matched paired samples of the lichen Pseudevernia furfuracea, a widely used biomonitor for which BEC values based on partial digestion were previously provided. The standard reference material BCR 482 (P. furfuracea) was used to validate analytical procedures consisting of either a HF total mineralization or an aqua regia partial one, both associated to ICP-MS multi-element analysis. In particular, the performance of the procedures was evaluated by comparing analytical results of field samples with the accuracy obtained on BCR aliquots (measured-to-expected percentage ratio). The total digestion showed a better performance for Al, As, Ba, Ca, Cd, Cu, Fe, Mn, Ni, Se, Sn, and Zn, whereas the opposite was found for Cr, Co, P, and S. Moreover, new BEC values were provided for P. furfuracea using a consolidated statistical approach, after a total sample digestion with hydrofluoric acid. The multivariate investigation of the background variability of 43 elements in 57 remote Italian sites led to the identification of geographically homogeneous areas for which BEC values are provided for use as reference in biomonitoring applications.


Air pollution Baseline Bioaccumulation Biomonitor Mineralization Acid extraction 



The authors are grateful to Drs. M. Bidussi, D. Cataldo, A. Carasci, T. Craighero, F. Cristofolini, S. Martellos, F. Panepinto, G. Potenza, and A. V. Romano for help in lichen sampling.

Funding information

This work was supported by the University of Trieste (grant number: FRA2015, resp. M. T.).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

10661_2019_7405_MOESM1_ESM.doc (471 kb)
ESM 1 (DOC 471 kb)


  1. Ashoka, S., Peake, B. M., Bremner, G., Hageman, K. J., & Reid, M. R. (2009). Comparison of digestion methods for ICP-MS determination of trace elements in fish tissues. Analytica Chimica Acta, 653(2), 191–199.CrossRefGoogle Scholar
  2. Aziz, R. A., Rahim, S. A., Sahid, I., & Idris, W. M. R. (2015). Speciation and availability of heavy metals on serpentinized paddy soil and paddy tissue. Procedia—Social and Behavioral Sciences, 195, 1658–1665.CrossRefGoogle Scholar
  3. Baffi, C., Bettinelli, M., Beone, G. M., & Spezia, S. (2002). Comparison of different analytical procedures in the determination of trace elements in lichens. Chemosphere, 48(3), 299–306.CrossRefGoogle Scholar
  4. Bandura, D. R., Baranov, V. I., & Tanner, S. D. (2002). Detection of ultratrace phosphorus and sulfur by quadrupole ICPMS with dynamic reaction cell. Analytical Chemistry, 74(7), 1497–1502.CrossRefGoogle Scholar
  5. Bargagli, R. (1998). Trace elements in terrestrial plants. An ecophysiological approach to biomonitoring and biorecovery. Berlin: Springer.Google Scholar
  6. Bargagli, R., & Mikhailova, I. (2002). Accumulation of inorganic contaminants. In P. L. Nimis, C. Scheidegger, & W. A. Wolseley (Eds.), Monitoring with lichens—monitoring lichens (pp. 65–84). Dordrecht: Kluwer Academic Publisher.CrossRefGoogle Scholar
  7. Bettinelli, M., Perotti, M., Spezia, S., Baffi, C., Beone, G. M., Alberici, F., Bergonzi, S., Bettinelli, C., Cantarini, P., & Mascetti, L. (2002). The role of analytical methods for the determination of trace elements in environmental biomonitors. Microchemical Journal, 73(1–2), 131–152.CrossRefGoogle Scholar
  8. Capozzi, F., Giordano, S., Di Palma, A., Spagnuolo, V., De Nicola, F., & Adamo, P. (2016). Biomonitoring of atmospheric pollution by moss bags: discriminating urban-rural structure in a fragmented landscape. Chemosphere, 149, 211–218.CrossRefGoogle Scholar
  9. Carvalho Vieira, E., Yassuo Kamogawa, M., Guimarães Lemos, S., de Araújo Nóbrega, J., & de Araújo Nogueira, R. (2005). Decomposição de amostras de solos assistida por radiação microndas: estratégia para evitar a formação de fluoretos insolúveis. Revista Brasileira de Cincia do Solo, 29, 547–533.CrossRefGoogle Scholar
  10. Castilho, I. N. B., Welz, B., Vale, M. G. R., de Andrade, J. B., Smichowski, P., Shaltouta, A. A., Colaresa, L., & Carasek, E. (2012). Comparison of three different sample preparation procedures for the determination of traffic-related elements in airborne particulate matter collected on glass fiber filters. Talanta, 88, 689–695.CrossRefGoogle Scholar
  11. Cecconi, E., Incerti, G., Capozzi, F., Adamo, P., Bargagli, R., Benesperi, R., Candotto Carniel, F., Favero-Longo, S. E., Giordano, S., Puntillo, D., Ravera, S., Spagnuolo, V., & Tretiach, M. (2018). Background element content of the lichen Pseudevernia furfuracea: a supra-national state of art implemented by novel field data from Italy. Science of the Total Environment, 622, 282–292.CrossRefGoogle Scholar
  12. Cecconi, E., Fortuna, L., Benesperi, R., Bianchi, E., Brunialti, G., Contardo, T., Di Nuzzo, L., Frati, L., Monaci, F., Munzi, S., Nascimbene, J., Paoli, L., Ravera, S., Vannini, A., Giordani, P., Loppi, S., & Tretiach, M. (2019). New interpretative scales for lichen bioaccumulation data: the Italian proposal. Atmosphere, 19, 136.CrossRefGoogle Scholar
  13. Chen, M., & Ma, L. Q. (1998). Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida soils. Journal of Environmental Quality, 27(6), 1294–1300.CrossRefGoogle Scholar
  14. Chen, M., & Ma, L. Q. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65(2), 491–499.CrossRefGoogle Scholar
  15. Cook, J. M., Gardner, M. J., Griffiths, A. H., Jessep, M. A., Ravenscroft, J. E., & Yates, R. (1997). The comparability of sample digestion techniques for the determination of metals in sediments. Marine Pollution Bulletin, 34(8), 637–644.CrossRefGoogle Scholar
  16. da Silva, Y. J. A. B., do Nascimento, C. W. A., & Biondi, C. M. (2014). Comparison of USEPA digestion methods to heavy metals in soil samples. Environmental Monitoring and Assessment, 186(1), 47–53.CrossRefGoogle Scholar
  17. Gallo, L., Corapi, A., Apollaro, C., Vespasiano, G., & Lucadamo, L. (2017). Effect of the interaction between transplants of the epiphytic lichen Pseudevernia furfuracea (L.) Zopf and rainfall on the variation of element concentrations associated with the water-soluble part of atmospheric depositions. Atmospheric Pollution Research, 8(5), 912–920.CrossRefGoogle Scholar
  18. García-Ordiales, E., Esbrí, J. M., Covelli, S., López-Berdonces, M. A., Higueras, P. L., & Loredo, J. (2016). Heavy metal contamination in sediments of an artificial reservoir impacted by long-term mining activity in the Almadén mercury district (Spain). Environmental Science and Pollution Research, 23(7), 6024–6038.CrossRefGoogle Scholar
  19. Gaudino, S., Galas, C., Belli, M., Barbizzi, S., de Zorzi, P., Jaćimović, R., Jeran, Z., Pati, A., & Sansone, U. (2007). The role of different soil sample digestion methods on trace elements analysis: a comparison of ICP-MS and INAA measurement results. Accreditation and Quality Assurance, 12(2), 84–93.CrossRefGoogle Scholar
  20. Goddard, S., & Brown, R. (2014). Investigation into alternative sample preparation techniques for the determination of heavy metals in stationary source emission samples collected on quartz filters. Sensors, 14(11), 21,676–21,692.CrossRefGoogle Scholar
  21. Hamilton, P. B., Lavoie, I., Alpay, S., & Ponader, K. (2015). Using diatom assemblages and sulfur in sediments to uncover the effects of historical mining on Lake Arnoux (Quebec, Canada): a retrospective of economic benefits vs. environmental debt. Frontiers in Ecology and Evolution, 3, 99.CrossRefGoogle Scholar
  22. Hoaglin, D. C., Iglewicz, B., & Tukey, J. W. (1986). Performance of some resistant rules for outlier labeling. Journal of the American Statistical Association, 81(396), 991–999.CrossRefGoogle Scholar
  23. Incerti, G., Cecconi, E., Capozzi, F., Adamo, P., Bargagli, R., Benesperi, R., Candotto Carniel, F., Cristofolini, F., Giordano, S., Puntillo, D., Spagnuolo, V., & Tretiach, M. (2017). Infraspecific variability in baseline element composition of the epiphytic lichen Pseudevernia furfuracea in remote areas: implications for biomonitoring of air pollution. Environmental Science and Pollution Research, 24(9), 8004–8016.CrossRefGoogle Scholar
  24. Kackstaetter, U. R., & Heinrichs, G. (1997). Validity of low cost laboratory geochemistry for environmental applications. Water, Air, and Soil Pollution, 95(1–4), 119–131.Google Scholar
  25. Kalembkiewicz, J., & Sitarz-Palczak, E. (2001). Optimization of mineralization procedures for the determination of Mn in soil samples by FAAS. Atomic Spectroscopy, 22(6), 433–437.Google Scholar
  26. Kuleshov, V. (2016). Isotope Geochemistry: The origin and formation of manganese rocks and ores. Amsterdam: Elsevier.Google Scholar
  27. Le Fèvre, B., & Pin, C. (2005). A straightforward separation scheme for concomitant Lu-Hf and Sm-Nd isotope ratio and isotope dilution analysis. Analytica Chimica Acta, 543(1–2), 209–221.CrossRefGoogle Scholar
  28. Legendre, P., & Legendre, L. (1998). Numerical ecology. Amsterdam: Elsevier.Google Scholar
  29. Li, T. C., Yuan, C. S., Huang, H. C., Lee, C. L., Wu, S. P., & Tong, C. (2017). Clustered long-range transport routes and potential sources of PM 2.5 and their chemical characteristics around the Taiwan Strait. Atmospheric Environment, 148, 152–166.CrossRefGoogle Scholar
  30. May, T. W., & Wiedmeyer, R. H. (1998). A table of polyatomic interferences in ICP-MS. Atomic Spectroscopy, 19, 150–155.Google Scholar
  31. Nash, T. H., III. (2008). Nutrients, elemental accumulation, mineral cycling. In T. H. Nash III (Ed.), Lichen biology (pp. 236–253). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  32. Niazi, S. B., Littlejohn, D., & Halls, D. J. (1993). Rapid partial digestion of biological tissues with nitric acid for the determination of trace elements by atomic spectrometry. Analyst, 118(7), 821–825.CrossRefGoogle Scholar
  33. Perez-Santana, S., Alfonso, M. P., Tagle, M. V., Icart, M. P., Brunori, C., & Morabito, R. (2007). Total and partial digestion of sediments for the evaluation of trace element environmental pollution. Chemosphere, 66(8), 1545–1553.CrossRefGoogle Scholar
  34. Quevauviller, P., Herzig, R., & Muntau, H. (1996). Certified reference material of lichen (CRM 482) for the quality control of trace element biomonitoring. Science of the Total Environment, 187(2), 143–152.CrossRefGoogle Scholar
  35. R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  36. Rashid, M. H., Fardous, Z., Chowdhury, M. A. Z., Alam, M. K., Bari, M. L., Moniruzzaman, M., & Gan, S. H. (2016). Determination of heavy metals in the soils of tea plantations and in fresh and processed tea leaves: an evaluation of six digestion methods. Chemistry Central Journal, 10(1), 7.CrossRefGoogle Scholar
  37. Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346(1–3), 1–16.CrossRefGoogle Scholar
  38. Riga-Karandinos, A. N., & Karandinos, M. G. (1998). Assessment of air pollution from a lignite power plant in the plain of Megalopolis (Greece) using as biomonitors three species of lichens; impacts on some biochemical parameters of lichens. Science of the Total Environment, 215(1–2), 167–183.CrossRefGoogle Scholar
  39. Rikkinen, J. (1997). Habitat shifts and morphological variation of Pseudevernia furfuracea along a topographical gradient. Symbolae Botanicae Upsalienses, 32, 223–245.Google Scholar
  40. Rodushkin, I., Ruth, T., & Huhtasaari, Å. (1999). Comparison of two digestion methods for elemental determinations in plant material by ICP techniques. Analytica Chimica Acta, 378(1–3), 191–200.CrossRefGoogle Scholar
  41. Rönkkömäki, H., Pöykiö, R., Nurmesniemi, H., Popov, K., Merisalu, E., Tuomi, T., & Välimäki, I. (2008). Particle size distribution and dissolution properties of metals in cyclone fly ash. International Journal of Environmental Science and Technology, 5(4), 485–494.CrossRefGoogle Scholar
  42. Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., Vos, D., et al. (2005). Geochemical Atlas of Europe. Part 1. Background information, methodology and maps. Espoo: Geological Survey of Finland.Google Scholar
  43. Sandroni, V., & Smith, C. M. (2002). Microwave digestion of sludge, soil and sediment samples for metal analysis by inductively coupled plasma–atomic emission spectrometry. Analytica Chimica Acta, 468(2), 335–344.CrossRefGoogle Scholar
  44. Sastre, J., Sahuquillo, A., Vidal, M., & Rauret, G. (2002). Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta, 462(1), 59–72.CrossRefGoogle Scholar
  45. Silva, J. S. A., Maranhão, T. D. A., de Oliveira, F. J. S., Curtius, A. J., & Frescura, V. L. A. (2014). Determination of rare earth elements in spent catalyst samples from oil refinery by dynamic reaction cell inductively coupled plasma mass spectrometry. Journal of the Brazilian Chemical Society, 25(6), 1062–1070.Google Scholar
  46. Smith, C. W., Aptroot, A., Coppins, B. J., Fletcher, A., Gilbert, O. L., James, P. W., & Wolseley, P. A. (2009). The lichens of Great Britain and Ireland. London: British Lichen Society.Google Scholar
  47. Tam, N. F. Y., & Yao, M. W. Y. (1999). Three digestion methods to determine concentrations of Cu, Zn, Cd, Ni, Pb, Cr, Mn, and Fe in mangrove sediments from Sai Keng, Chek Keng, and Sha Tau Kok, Hong Kong. Bulletin of Environmental Contamination and Toxicology, 62(6), 708–716.CrossRefGoogle Scholar
  48. Tretiach, M., Candotto Carniel, F., Loppi, S., Carniel, A., Bortolussi, A., Mazzilis, D., & Del Bianco, C. (2011a). Lichen transplants as a suitable tool to identify mercury pollution from waste incinerators: a case study from NE Italy. Environmental Monitoring and Assessment, 175(1–4), 589–600.CrossRefGoogle Scholar
  49. Tretiach, M., Pittao, E., Crisafulli, P., & Adamo, P. (2011b). Influence of exposure sites on trace element enrichment in moss-bags and characterization of particles deposited on the biomonitor surface. Science of the Total Environment, 409(4), 822–830.CrossRefGoogle Scholar
  50. Tuncel, S. G., Yenisoy-Karakas, S., & Dogangün, A. (2004). Determination of metal concentrations in lichen samples by inductively coupled plasma atomic emission spectroscopy technique after applying different digestion procedures. Talanta, 63(2), 273–277.CrossRefGoogle Scholar
  51. Yafa, C., & Farmer, J. G. (2006). A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry. Analytica Chimica Acta, 557(1–2), 296–303.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elva Cecconi
    • 1
  • Guido Incerti
    • 2
  • Fiore Capozzi
    • 3
  • Paola Adamo
    • 4
  • Roberto Bargagli
    • 5
  • Renato Benesperi
    • 6
  • Fabio Candotto Carniel
    • 1
  • Sergio Enrico Favero-Longo
    • 7
  • Simonetta Giordano
    • 3
  • Domenico Puntillo
    • 8
  • Sonia Ravera
    • 9
  • Valeria Spagnuolo
    • 3
  • Mauro Tretiach
    • 1
    Email author
  1. 1.Department of Life SciencesUniversity of TriesteTriesteItaly
  2. 2.Department of Agri-Food, Environmental and Animal Sciences (Di4A)University of UdineUdineItaly
  3. 3.Department of BiologyUniversity of Naples Federico IINapoliItaly
  4. 4.Department of Agricultural SciencesUniversity of Naples Federico IINapoliItaly
  5. 5.Department of Physical, Earth and Environmental SciencesUniversity of SienaSienaItaly
  6. 6.Department of BiologyUniversity of FlorenceFlorenceItaly
  7. 7.Department of Life Sciences and System BiologyUniversity of TorinoTorinoItaly
  8. 8.Natural History Museum and Botanical GardenUniversity of CalabriaArcavacata di Rende, CosenzaItaly
  9. 9.Department of Biosciences and Territory (DiBT)University of MolisePesche, IserniaItaly

Personalised recommendations