Advertisement

Total mercury, chromium, nickel and other trace chemical element contents in soils at an old cinnabar mine site (Merník, Slovakia): anthropogenic versus natural sources of soil contamination

  • Tatsiana Kulikova
  • Edgar HillerEmail author
  • Ľubomír Jurkovič
  • Lenka Filová
  • Peter Šottník
  • Petr Lacina
Article
  • 53 Downloads

Abstract

The aims of this study were to investigate the occurrence and distribution of total mercury (Hg) and other trace elements of environmental concern, such as arsenic (As), copper (Cu), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn) and vanadium (V), in soils from the abandoned Merník cinnabar mine in eastern Slovakia. For this purpose, thirty soil samples from two depth intervals within the mine area (n = 60 soil samples) and additional sixteen soil samples from adjacent areas (n = 25 soil samples) were collected. Total Hg was measured by atomic absorption spectrometry, while As and other metals were analyzed using inductively coupled plasma atomic emission spectrometry. High mercury concentrations (> 100 mg/kg with a maximum of 951 mg/kg) were observed only in surface soils close to mine waste heaps and adits. Otherwise, Hg concentrations in the majority of surface soils were lower (0.14–19.7 mg/kg), however, higher than Hg in soils collected from sites outside the mine area (0.19–6.92 mg/kg) and even considerably higher than Hg in soils at sites not influenced by the Merník mine. Elevated Cr and Ni concentrations in soils regardless of their sampling sites (mean of 276 mg/kg and median of 132 mg/kg for Cr and 168 mg/kg and 81 mg/kg for Ni, respectively) were attributed to the lithology of the area; the soils are underlain by the sediments of the Central Carpathian Palaeogene, containing a detritus of ultrabasic rocks. As our geochemical data are compositional in nature, they were further treated by compositional data analysis (CoDA). Robust principal component analysis (RPCA) applied on centred (clr) log-ratio-transformed data and correlation analysis of compositional parts based on symmetric balances distinguished very well different sources of origin for the chemical elements. The following three element associations were identified: Hg association with the main source in mining/roasting, Cr–Ni association derived from bedrock and As–Cu–Mn–Pb–Zn–V association (natural background and minor sulphides/sulfosalts in mineralized rocks). The values of geoaccumulation index and enrichment factor suggested that concentrations of Hg in the soils were influenced by human industrial activities.

Keywords

Compositional data analysis Contamination Mercury Mine soil Nickel Slovakia 

Notes

Acknowledgments

This study was financially supported by the Scientific Grant Agency (VEGA) under the project No. 1/0597/17. Comenius University Grant No. UK/247/2018 is greatly acknowledged for financial support of the present study. We would like to thank two reviewers for their valuable comments that helped to improve the scientific level of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10661_2019_7391_MOESM1_ESM.pdf (2.5 mb)
ESM 1 (PDF 2604 kb)

References

  1. Agency for Toxic Substance and Disease Registry (ATSDR). (1999). Toxicological profile for mercury. Atlanta: U.S. Department of Health and Human Services https://www.atsdr.cdc.gov/toxprofiles/tp46.pdf. Accessed 20 Aug 2018.Google Scholar
  2. Aitchison, J. (1986). The statistical analysis of compositional data. London: Chapman & Hall, Ltd..CrossRefGoogle Scholar
  3. Angelovičová, L., & Fazekašová, D. (2014). Contamination of the soil and water environment by heavy metals in the former mining area of Rudňany (Slovakia). Soil and Water Research, 9(1), 18–24.  https://doi.org/10.17221/24/2013-SWR.CrossRefGoogle Scholar
  4. Anon (2015). Guideline of Ministry of Environment of the Slovak Republic No. 1/2015–7 for the elaboration of risk assessment analysis of contaminated sites. http://www.minzp.sk/files/sekcia-geologie-prirodnych-zdrojov/ar_smernica_final.pdf. Accessed 27 June 2018. (in Slovak).
  5. Árvay, J., Tomas, J., Hauptvogl, M., Kopernicka, M., Kovacik, A., Bajcan, D., & Massanyi, P. (2014). Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. Journal of Environmental Sciience and Health B, 49, 815–827.  https://doi.org/10.1080/03601234.2014.938550.CrossRefGoogle Scholar
  6. Árvay, J., Demková, L., Hauptvogl, M., Michalko, M., Bajčan, D., Stanovič, R., Tomáš, J., Hrstková, M., & Trebichalský, P. (2017). Assessment of environmental and health risks in former polymetallic ore mining and smelting area, Slovakia: spatial distribution and accumulation of mercury in four different ecosystems. Ecotoxicology and Environmental Safety, 144, 236–244.  https://doi.org/10.1016/j.ecoenv.2017.06.020.CrossRefGoogle Scholar
  7. Auxt, A., Kotúč, J., Bačik, M., Leššo, J., Šottník, P., Jurkovič, Ľ., Peťková, K., Sekula, P., Jr., Komoň, J., Polčan, I., & Sekula, P. (2015). Investigation of the environmental burden VT (018)/Merník—mercury mines. Final report of geological works. Bratislava: Ministry of Environment of the Slovak Republic (in Slovak).Google Scholar
  8. Bailey, E. A., & Gray, J. E. (1997). Mercury in the terrestrial environment, Kuskokwim Mountains region, southwestern Alaska. In J. A. Dumoulin & J. E. Gray (Eds.), Geologic studies in Alaska by the U.S. Geological Survey, 1995 (pp. 41–56). United States Government Printing Office: Washington.Google Scholar
  9. Bavec, Š., Gosar, M., Biester, H., & Grčman, H. (2015). Geochemical investigation of mercury and other elements in urban soil of Idrija (Slovenia). Journal of Geochemical Exploration, 154, 213–223.  https://doi.org/10.1016/j.gexplo.2014.10.011.CrossRefGoogle Scholar
  10. Bernhoft, R. A. (2012). Mercury toxicity and treatment: a review of the literature. Journal of Environmental and Public Health, 2012, 10.  https://doi.org/10.1155/2012/460508.CrossRefGoogle Scholar
  11. Bini, C., Maleci, L., & Wahsha, M. (2017). Potentially toxic elements in serpentine soils and plants from Tuscany (Central Italy). A proxy for soil remediation. Catena, 148(Part 1), 60–66.  https://doi.org/10.1016/j.catena.2016.03.014.CrossRefGoogle Scholar
  12. Bjørklund, G., Dadar, M., Mutter, J., & Aaseth, J. (2017). The toxicology of mercury: current research and emerging trends. Environmental Research, 159, 545–554.  https://doi.org/10.1016/j.envres.2017.08.051.CrossRefGoogle Scholar
  13. Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 40(12), 1335–1351.  https://doi.org/10.1016/S0045-6535(99)00283-0.CrossRefGoogle Scholar
  14. Bonifacio, E., Falsone, G., & Piazza, S. (2010). Linking Ni and Cr concentrations to soil mineralogy: does it help to assess metal contamination when the natural background is high? Journal of Soils and Sediments, 10(8), 1475–1486.  https://doi.org/10.1007/s11368-010-0244-0.CrossRefGoogle Scholar
  15. Camacho, A., Van Brussel, E., Carrizales, L., Flores-Ramírez, R., Verduzco, B., Ruvalcaba-Aranda Huerta, S., Leon, M., & Díaz-Barriga, F. (2016). Mercury mining in Mexico: I. Community engagement to improve health outcomes from artisanal mining. Annals of Global Health, 82(1), 149–155.  https://doi.org/10.1016/j.aogh.2016.01.014.CrossRefGoogle Scholar
  16. Campos, J. A., Esbrí, J. M., Madrid, M. M., Naharro, R., Peco, J., García-Noguero, E. M., Amorós, J. A., Moreno, M. M., & Higuera, P. (2018). Does mercury presence in soils promote their microbial activity? The Almadenejos case (Almadén mercury mining district, Spain). Chemosphere, 201, 799–806.  https://doi.org/10.1016/j.chemosphere.2018.02.163.CrossRefGoogle Scholar
  17. Čurlík, J. (2011). Potentially toxic trace elements and their distribution in Slovakian soils. Bratislava: Jaroslav Suchoň—Suma Print (in Slovak with English summary).Google Scholar
  18. Čurlík, J., & Šefčík, P. (1999). Geochemical atlas of the Slovak republic. Part V—soils. Bratislava: Soil Science and Conservation Research Institute.Google Scholar
  19. Čurlík, J., Ďurža, O., Jurkovič, Ľ., Hodossyová, R., & Kolesár, M. (2011). Geogenic contamination by Cr and Ni and “serpentinic-like” soils in the Central Carpathian Paleogene basin of Eastern Slovakia. Mineralia Slovaca, 43(4), 365–376 (in Slovak with English abstract and summary).Google Scholar
  20. Čurlík, J., Kolesár, M., Ďurža, O., & Hiller, E. (2016). Dandelion (Taraxacum officinale) and agrimony (Agrimonia eupatoria) as indicators of geogenic contamination of flysch soils in Eastern Slovakia. Archives of Environmental Contamination and Toxicology, 70(3), 475–486.  https://doi.org/10.1007/s00244-015-0206-z.CrossRefGoogle Scholar
  21. da Penha Rhodes, V., de Lena, J. C., Santolin, C. V. A., da Silva Pinto, T., Mendes, L. A., & Windmöller, C. C. (2018). Speciation and quantification of Hg in sediments contaminated by artisanal gold mining in the Gualaxo do Norte River, Minas Gerais, SE, Brazil. Environmental Monitoring and Assessment, 190, 49.  https://doi.org/10.1007/s10661-017-6394-4.CrossRefGoogle Scholar
  22. Dadová, J., Andráš, P., Kupka, J., Krnáč, J., Andráš, P., Jr., Hroncová, E., & Midula, P. (2016). Mercury contamination from historical mining territory at Malachov Hg-deposit (Central Slovakia). Environmental Science and Pollution Research, 23(3), 2914–2927.  https://doi.org/10.1007/s11356-015-5527-y.CrossRefGoogle Scholar
  23. Daniel, J., Bezák, J., Matúš, J., Lučivjanský, L., Mašlárová, I., & Danielová, K. (2003). Complex evaluation of the closed Merník deposit. Final report of geological works. Spišská Nová Ves: Uranpres, Ltd. (in Slovak).Google Scholar
  24. Doležalová Weissmannová, H., & Pavlovský, J. (2017). Indices of soil contamination by heavy metals—methodology of calculation for pollution assessment (minireview). Environmental Monitoring and Assessment, 189, 616.  https://doi.org/10.1007/s10661-017-6340-5.CrossRefGoogle Scholar
  25. Domagalski, J. (2001). Mercury and methylmercury in water and sediment of the Sacramento River Basin, California. Applied Geochemistry, 16(15), 1677–1691.  https://doi.org/10.1016/S0883-2927(01)00068-3.CrossRefGoogle Scholar
  26. Dombaiová, R. (2005). Mercury and methylmercury in plants from different contaminated sites in Slovakia. Plant, Soil and Environment, 51(10), 456–463.  https://doi.org/10.17221/3617-PSE.CrossRefGoogle Scholar
  27. Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a global pollutant: sources, pathways, and effects. Environmental Science & Technology, 47(10), 4967–4983.  https://doi.org/10.1021/es305071v.CrossRefGoogle Scholar
  28. Ďuďa, R., & Kaličiaková, E. (1987). Mineralogical-paragenetic conditions in the Merník Hg deposit. Mineralia Slovaca, 19(5), 423–442 (in Slovak with English abstract).Google Scholar
  29. Ettler, V., Rohovec, J., Navrátil, T., & Mihaljevič, M. (2007). Mercury distribution in soil profiles polluted by lead smelting. Bulletin of Environmental Contamination and Toxicology, 78(1), 13–17.  https://doi.org/10.1007/s00128-007-9033-x.CrossRefGoogle Scholar
  30. Fernández-Martínez, R., Larios, R., Gómez-Pinilla, I., Gómez-Mancebo, B., López-Andrés, S., Loredo, J., Ordóñez, A., & Rucandio, I. (2015). Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma, 253–254, 30–38.  https://doi.org/10.1016/j.geoderma.2015.04.005.CrossRefGoogle Scholar
  31. Filzmoser, P., Hron, K., & Reimann, C. (2010). The bivariate statistical analysis of environmental (compositional) data. Science of the Total Environment, 408(19), 4230–4238.  https://doi.org/10.1016/j.scitotenv.2010.05.011.CrossRefGoogle Scholar
  32. Gardea-Torresdey, J. L., de la Rosa, G., Peralta-Videa, J. R., Montes, M., Cruz-Jimenez, G., & Cano-Aguilera, I. (2005). Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Archives of Environmental Contamination and Toxicology, 48(2), 225–232.  https://doi.org/10.1007/s00244-003-0162-x.CrossRefGoogle Scholar
  33. Gnamuš, A., Byrne, A. R., & Horvat, M. (2000). Mercury in the soil–plant–deer–predator food chain on a temperate forest in Slovenia. Environmental Science & Technology, 34(16), 3337–3345.  https://doi.org/10.1021/es991419w.CrossRefGoogle Scholar
  34. Gosar, M., & Teršič, T. (2012). Mercury enrichments in soils influenced by Idrija mercury mine, Slovenia. RMZ—Materials and Geoenvironment, 59(2/3), 141–158.Google Scholar
  35. Gray, J. E., Theodorakos, P. M., Fey, D. L., & Krabbenhoft, D. P. (2014). Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA. Environmental Geochemistry and Health, 37(1), 35–48.  https://doi.org/10.1007/s10653-014-9628-1.CrossRefGoogle Scholar
  36. Hančuľák, J., Bobro, M., Šestinová, O., Brehuv, J., & Slančo, P. (2006). Mercury in the surrounding of old mining loads of Rudňany and Merník. Acta Montanistica Slovaca, 11(2), 295–299 (in Slovak with English abstract).Google Scholar
  37. Higueras, P., Oyarzun, R., Biester, H., Lillo, J., & Lorenzo, S. (2003). A first insight into mercury distribution and speciation in soils from the Almaden mining district, Spain. Journal of Geochemical Exploration, 80(1), 95–104.  https://doi.org/10.1016/S0375-6742(03)00185-7.CrossRefGoogle Scholar
  38. Higueras, P., Oyarzun, R., Lillo, J., Sánchez-Hernández, J. C., Molina, J. A., Esbrí, J. M., & Lorenzo, S. (2006). The Almadén district (Spain): anatomy of one of the world’s largest Hg-contaminated sites. Science of the Total Environment, 356(1–3), 112–124.  https://doi.org/10.1016/j.scitotenv.2005.04.042.CrossRefGoogle Scholar
  39. Hrnčárová, M., Soták, J., Biroň, A., Kotulová, J., & Spišiak, J. (1998). Geochemistry of claystones of the Central Carpathian Paleogene of the Levočské vrchy Mts.—indicators of deposition environment, sources and diagenetic processes. Mineralia Slovaca, 30(3), 217–234 (in Slovak with English abstract and summary).Google Scholar
  40. Huang, S. H., Peng, B., Yang, Z. H., Chai, L. Y., & Zhou, L. C. (2009). Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory. Transactions of Nonferrous Metals Society of China, 19(1), 241–248.  https://doi.org/10.1016/S1003-6326(08)60259-9.CrossRefGoogle Scholar
  41. Ilavský, J., & Satran, V. (1980). Metallogenic map of Czechoslovakia 1:500 000. Explanatory text and legend. Bratislava: Geological Institute of Dionýz Štúr (in Slovak).Google Scholar
  42. Jackson, M. L. (1958). Soil chemical analysis. Englewood Cliffs: Prentice-Hall, Inc..Google Scholar
  43. Jia, Q., Zhu, X., Hao, Y., Yang, Z., Wang, Q., Fu, H., & Yu, H. (2018). Mercury in soil, vegetable and human hair in a typical mining area in China: implication for human exposure. Journal of Environmental Sciences, 68, 73–82.  https://doi.org/10.1016/j.jes.2017.05.018.CrossRefGoogle Scholar
  44. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press LLC.Google Scholar
  45. Kien, C. N., Noi, N. V., Son, L. T., Ngoc, H. M., Tanaka, S., Nishina, T., & Iwasaki, K. (2010). Heavy metal contamination of agricultural soils around a chromite mine in Vietnam. Soil Science and Plant Nutrition, 56, 344–356.  https://doi.org/10.1111/j.1747-0765.2010.00451.x.CrossRefGoogle Scholar
  46. Kierczak, J., Neel, C., Bril, H., & Puziewicz, J. (2007). Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma, 142(1–2), 165–172.  https://doi.org/10.1016/j.geoderma.2007.08.009.CrossRefGoogle Scholar
  47. Kobal, A. B., Tratnik, J. S., Mazej, D., Fajon, V., Gibičar, D., Miklavčič, A., Kocman, D., Kotnik, J., et al. (2017). Exposure to mercury in susceptible population groups living in the former mercury mining town of Idrija, Slovenia. Environmental Research, 152, 434–445.  https://doi.org/10.1016/j.envres.2016.06.037.CrossRefGoogle Scholar
  48. Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—a review. Environmental Geochemistry and Health, 40(6), 2395–2420.  https://doi.org/10.1007/s10653-018-0106-z.CrossRefGoogle Scholar
  49. Krishna, A. K., Mohan, K. R., Murthy, N. N., Periasamy, V., Bipinkumar, G., Manohar, K., & Rao, S. S. (2013). Assessment of heavy metal contamination in soils around chromite mining areas, Nuggihalli, Karnataka, India. Environmental Earth Sciences, 70(2), 699–708.  https://doi.org/10.1007/s12665-012-2153-6.CrossRefGoogle Scholar
  50. Kynčlová, P., Filzmoser, P., & Hron, K. (2016). Compositional biplots including external non-compositional variables. Statistics, 50(5), 1132–1148.  https://doi.org/10.1080/02331888.2015.1135155.CrossRefGoogle Scholar
  51. Kynčlová, P., Hron, K., & Filzmoser, P. (2017). Correlation between compositional parts based on symmetric balances. Mathematical Geosciences, 49(6), 777–796.  https://doi.org/10.1007/s11004-016-9669-3.CrossRefGoogle Scholar
  52. Li, P., Feng, X., Qiu, G., Shang, L., & Wang, S. (2012). Mercury pollution in Wuchuan mercury mining area, Guizhou, Southwestern China: the impacts from large scale and artisanal mercury mining. Environment International, 42, 59–66.  https://doi.org/10.1016/j.envint.2011.04.008.CrossRefGoogle Scholar
  53. Li, P., Li, Y., & Feng, X. (2016). Mercury and selenium interactions in human blood in the Wanshan mercury mining area, China. Science of the Total Environment, 573, 376–381.  https://doi.org/10.1016/j.scitotenv.2016.08.098.CrossRefGoogle Scholar
  54. Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Pirrone, N., Prestbo, E., & Seigneur, C. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio, 36(1), 19–32. https://doi.org/10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2.Google Scholar
  55. Loredo, J., Ordóñez, A., & Álvarez, R. (2006). Environmental impact of toxic metals and metalloids from the Muñón Cimero mercury-mining area (Asturias, Spain). Journal of Hazardous Materials, 136(3), 455–467.  https://doi.org/10.1016/j.jhazmat.2006.01.048.CrossRefGoogle Scholar
  56. Martínez-Trinidad, S., Silva, G. H., Reyes, J. M., Munguía, G. S., Valdez, S. S., & Islas, M. E. R. (2013). Total mercury in terrestrial systems (air-soil-plant-water) at the mining region of San Joaquín, Queretaro, Mexico. Geofísica Internacional, 52(1), 43–58.  https://doi.org/10.1016/S0016-7169(13)71461-2.CrossRefGoogle Scholar
  57. Millán, R., Gamarra, R., Schmid, T., Sierra, M. J., Quejido, A. J., Sánchez, D. M., Cardona, A. I., Fernández, M., & Vera, R. (2006). Mercury content in vegetation and soils of the Almadén mining area (Spain). Science of the Total Environment, 368(1), 79–87.  https://doi.org/10.1016/j.scitotenv.2005.09.096.CrossRefGoogle Scholar
  58. Musilová, J., Arvay, J., Vollmannova, A., Toth, T., & Tomas, J. (2016). Environmental contamination by heavy metals in region with previous mining activity. Bulletin of Environmental Contamination and Toxicology, 97, 569–575.  https://doi.org/10.1007/s00128-016-1907-3.CrossRefGoogle Scholar
  59. Navarro, A., Biester, H., Mendoza, J.L., & Cardellach, E. (2006). Mercury speciation and mobilization in contaminated soils of the Valle del Azogue Hg mine (SE, Spain). Environmental Geology, 49(8), 1089–1101.Google Scholar
  60. Navarro, A., Cardellach, E., & Corbella, M. (2009). Mercury mobility in mine waste from Hg-mining areas in Almería, Andalusia (SE Spain). Journal of Geochemical Exploration, 101(3), 236–246.  https://doi.org/10.1016/j.gexplo.2008.08.004.CrossRefGoogle Scholar
  61. Oze, C. J., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004). Chromium geochemistry of serpentine soils. International Geology Review, 46(2), 97–126.  https://doi.org/10.2747/0020-6814.46.2.97.CrossRefGoogle Scholar
  62. Palmieri, H. E. L., Nalini, H. A., Jr., Leonel, L. V., Windmöller, C. C., Santos, R. C., & de Brito, W. (2006). Quantification and speciation of mercury in soils from the Tripuí Ecological Station, Minas Gerais, Brazil. Science of the Total Environment, 368(1), 69–78.  https://doi.org/10.1016/j.scitotenv.2005.09.085.CrossRefGoogle Scholar
  63. Pawlowsky-Glahn, V., & Buccianti, A. (2011). Compositional data analysis: theory and applications. Chichester: John Wiley & Sons, Ltd..CrossRefGoogle Scholar
  64. Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G., Streets, D. G., & Telmer, K. (2009). Global mercury emissions to the atmosphere from natural and anthropogenic sources. In N. Pirrone & R. Mason (Eds.), Mercury fate and transport in the global atmosphere. Emissions, measurements and models (pp. 1–47). Boston: Springer.Google Scholar
  65. Plašienka, D., Soták, J., & Prokešová, R. (1998). Structural profiles across the Šambron–Kamenica Periklippen zone of the Central Carpathian Paleogene Basin in NE Slovakia. Mineralia Slovaca, 30(3), 173–184.Google Scholar
  66. Poulin, J., & Gibb, H. (2008). Mercury: assessing the environmental burden of disease at national and local levels. Geneva: World Health Organization WHO Environmental Burden of Disease Series No. 16. http://apps.who.int/iris/bitstream/handle/10665/43875/9789241596572_eng.pdf;jsessionid=96D5123A814438A46A3C27533A4B2EF7?sequence=1. Accessed 20 Aug 2018.Google Scholar
  67. Qiu, G., Feng, X., Wang, S., & Shang, L. (2005). Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China. Applied Geochemistry, 20(3), 627–638.  https://doi.org/10.1016/j.apgeochem.2004.09.006.CrossRefGoogle Scholar
  68. Qiu, G., Feng, X., Meng, B., Zhang, C., Gu, C., Du, B., & Lin, Y. (2013). Environmental geochemistry of an abandoned mercury mine in Yanwuping, Guizhou Province, China. Environmental Research, 125, 124–130.  https://doi.org/10.1016/j.envres.2013.01.008.CrossRefGoogle Scholar
  69. Quantin, C., Ettler, V., Garnier, J., & Šebek, O. (2008). Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. Comptes Rendus Geoscience, 340(12), 872–882.  https://doi.org/10.1016/j.crte.2008.07.013.CrossRefGoogle Scholar
  70. R Core Team. (2018). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project/. Accessed 17 Aug 2018.Google Scholar
  71. Rasulov, O., Zacharová, A., & Schwarz, M. (2017). Determination of total mercury in aluminium industrial zones and soil contaminated with red mud. Environmental Monitoring and Assessment, 189, 388.  https://doi.org/10.1007/s10661-017-6079-z.CrossRefGoogle Scholar
  72. Rice, K. M., Walker, E. M., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental mercury and its toxic effects. Journal of Preventive Medicine & Public Health, 47(2), 74–83.  https://doi.org/10.3961/jpmph.2014.47.2.74.CrossRefGoogle Scholar
  73. Rimondi, V., Gray, J. E., Costagliola, P., Vaselli, O., & Lattanzi, P. (2012). Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy. Science of the Total Environment, 414, 318–327.  https://doi.org/10.1016/j.scitotenv.2011.10.065.CrossRefGoogle Scholar
  74. Robins, N. A., Hagan, N., Halabi, S., Hsu-Kim, H., Gonzales, R. D. E., Morris, M., Woodall, G., Richter, D. D., Heine, P., Zhang, T., Bacon, A., & Vandenberg, J. (2012). Estimations of historical atmospheric mercury concentrations from mercury refining and present-day soil concentrations of total mercury in Huancavelica, Peru. Science of the Total Environment, 426, 146–154.  https://doi.org/10.1016/j.scitotenv.2012.03.082.CrossRefGoogle Scholar
  75. Różański, S. Ł., Castejón, J. M. P., & Fernández, G. G. (2016). Bioavailability and mobility of mercury in selected soil profiles. Environmental Earth Sciences, 75, 1065.  https://doi.org/10.1007/s12665-016-5863-3.CrossRefGoogle Scholar
  76. Saglam, C. (2017). Heavy metal concentrations in serpentine soils and plants from Kizildag national park (Isparta) in Turkey. Fresenius Environmental Bulletin, 26(6), 3995–4003.Google Scholar
  77. Seklaoui, M., Boutaleb, A., Benali, H., Alligui, F., & Prochaska, W. (2016). Environmental assessment of mining industry solid pollution in the mercurial district of Azzaba, northeast Algeria. Environmental Monitoring and Assessment, 188, 621.  https://doi.org/10.1007/s10661-016-5619-2.CrossRefGoogle Scholar
  78. Soták, J., & Bebej, J. (1996). Serpentinic sandstone from the Šambron–Kamenica zone in Eastern Slovakia: evidence of deposition in a Tertiary collisional belt. Geologica Carpathica, 47(4), 227–238.Google Scholar
  79. Soták, J., Križáni, I., & Spišiak, J. (1990). On position and material composition of the Merník conglomerates (the Central Carpathian Paleogene). Acta Geologica et Geographica Universitatis Comenianae, Geologica, 45, 117–125.Google Scholar
  80. Soták, J., Križáni, I., & Spišiak, J. (1991). Stratigraphic position and sedimentology of the Merník conglomerates. Geologické Práce, Správy, 92, 53–69 (in Slovak with English abstract and summarry).Google Scholar
  81. SPS VÚPOP. (2014). Morphogenetic soil classification system of Slovakia. Basal reference taxonomy. Bratislava: Soil Science and Conservation Research Institute (in Slovak).Google Scholar
  82. Sreekanth, T. V. M., Nagajyothi, P. C., Lee, K. D., & Prasad, T. N. V. K. V. (2013). Occurrence, physiological responses and toxicity of nickel in plants. International Journal of Environmental Science and Technology, 10(5), 1129–1140.  https://doi.org/10.1007/s13762-013-0245-9.CrossRefGoogle Scholar
  83. Sysalová, J., Kučera, J., Drtinová, B., Červenka, R., Zvěřina, O., Komárek, J., & Kameník, J. (2017). Mercury species in formerly contaminated soils and released soil gases. Science of the Total Environment, 584–585, 1032–1039.  https://doi.org/10.1016/j.scitotenv.2017.01.157.CrossRefGoogle Scholar
  84. Tashakor, M., Modabberi, S., van der Ent, A., & Echevarria, G. (2018). Impacts of ultramafic outcrops in Peninsular Malaysia and Sabah on soil and water quality. Environmental Monitoring and Assessment, 190, 333.  https://doi.org/10.1007/s10661-018-6668-5.CrossRefGoogle Scholar
  85. Telmer, K. H., & Veiga, M. M. (2009). World emissions of mercury from artisanal and small scale gold mining. In N. Pirrone & R. Mason (Eds.), Mercury fate and transport in the global atmosphere. Emissions, measurements and models (pp. 131–172). Boston: Springer.CrossRefGoogle Scholar
  86. Teršič, T., Gosar, M., & Biester, H. (2011). Distribution and speciation of mercury in soil in the area of an ancient mercury ore roasting site, Frbejžene trate (Idrija area, Slovenia). Journal of Geochemical Exploration, 110(2), 136–145.  https://doi.org/10.1016/j.gexplo.2011.05.002.CrossRefGoogle Scholar
  87. Turekian, K. K. (1972). Chemistry of the earth. New York: Holt, Rinehart and Winston, Inc..Google Scholar
  88. Vass, D., Vozár, J., Elečko, M., Čverčko, M., Kaličiak, M., & Morkovský, M. (1987). A map of the East Slovak lowland 1:100 000. Bratislava: Geological Institute of Dionýz Štúr (in Slovak).Google Scholar
  89. Wang, D., & Anderson, D. W. (1998). Direct measurement of organic carbon content in soils by the Leco CR-12 carbon analyzer. Communications in Soil Science and Plant Analysis, 29(2), 15–21.  https://doi.org/10.1080/00103629809369925.CrossRefGoogle Scholar
  90. Xu, X., Lin, Y., Meng, B., Feng, X., Xu, Z., Jiang, Y., Zhong, W., Hu, Y., & Qiu, G. (2018). The impact of an abandoned mercury mine on the environment in the Xiushan region, Chongqing, southwestern China. Applied Geochemistry, 88(Part B), 267–275.  https://doi.org/10.1016/j.apgeochem.2017.04.005.CrossRefGoogle Scholar
  91. Yang, Y.-K., Zhang, C., Shi, X.-J., Lin, T., & Wang, D.-Y. (2007). Effect of organic matter and pH on mercury release from soils. Journal of Environmental Sciences, 19(11), 1349–1354.  https://doi.org/10.1016/S1001-0742(07)60220-4.CrossRefGoogle Scholar
  92. Yin, R., Gu, C., Feng, X., Hurley, J. P., Krabbenhoft, D. P., Lepak, R. F., Zhua, W., Zheng, L., & Hu, T. (2016). Distribution and geochemical speciation of soil mercury in Wanshan Hg mine: effects of cultivation. Geoderma, 272, 32–38.  https://doi.org/10.1016/j.geoderma.2016.03.003.CrossRefGoogle Scholar
  93. Zhang, L., Jin, Y., Lu, J., & Zhang, C. (2009). Concentration, distribution and bioaccumulation of mercury in the Xunyang mercury mining area, Shaanxi Province, China. Applied Geochemistry, 24(5), 950–956.  https://doi.org/10.1016/j.apgeochem.2009.02.027.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Geochemistry, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovak Republic
  2. 2.Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and InformaticsComenius University in BratislavaBratislavaSlovak Republic
  3. 3.Department of Geology of Mineral Deposits, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovak Republic
  4. 4.GEOtest, a.s.BrnoCzech Republic

Personalised recommendations