Influence of metal ions on glyphosate detection by FMOC-Cl

  • Peter GrosEmail author
  • Ashour A. Ahmed
  • Oliver Kühn
  • Peter Leinweber


Glyphosate (GLP, N-(phosphonomethyl)glycine) is the most important broadband herbicide in the world, but discussions are controversial regarding its environmental behaviour and distribution. Residue analyses in a variety of environmental samples are commonly conducted by HPLC–MS where GLP needs to be derivatised with 9-fluoromethoxycarnonyl chloride (FMOC-Cl). Since this derivatisation reaction was suspected to be inhibited by metal ions in the sample matrix, the present study provides a comprehensive experimental study of the effect of metal ions (Al3+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Fe3+, Mg2+, Mn2+, Zn2+) on derivatisation and GLP recovery. Results show that some metals (Cd2+, Co2+, Cu2+, Mn2+ and Zn2+) decreased the GLP recovery down to 19 to 59%. Complementary, quantum chemical modelling of 1:1 GLP–metal complexes as well as their reactivity with respect to FMOC-Cl was performed. Here, a decrease in reactivity of FMOC-Cl towards GLP–metal complexes is observed; i.e. the reaction is non-spontaneous in contrast to the free GLP case. The present results are in accord with previous studies and provide an explanation that full GLP recovery in different matrices was never reached. Remedy strategies to compensate for the inhibition effect are explored such as pH adjustment to acidic or alkaline conditions or addition of ethylenediaminetetraacetic acid (EDTA). In general, our results question the use of internal isotopic labelled standards (ILS) since this presupposes the presence of the analyte and the ILS in the same (free) form.


Glyphosate (GLP) FMOC-Cl Complex formation Derivatisation EDTA 



The modelling part of this work has been performed within the InnoSoilPhos-project (, funded by the German Federal Ministry of Education and Research (BMBF) in the frame of the BonaRes-program (No. 031A558). Peter Gros acknowledges a PhDgrant from the state of Mecklenburg-Western Pommerania. This research was conducted within the scope of the Leibniz ScienceCampus Phosphorus Research Rostock.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10661_2019_7387_MOESM1_ESM.docx (134 kb)
ESM 1 (DOCX 134 kb)


  1. Ahmed, A. A., Gros, P., Kühn, O., & Leinweber, P. (2018a). Molecular level investigation of the role of peptide interactions in the glyphosate analytics. Chemosphere, 196, 129–134.CrossRefGoogle Scholar
  2. Ahmed, A. A., Leinweber, P., & Kühn, O. (2018b). Unravelling the nature of glyphosate binding to goethite surfaces by ab initio molecular dynamics simulations. Physical Chemistry Chemical Physics, 20, 1531–1539.CrossRefGoogle Scholar
  3. Arkan, T., & Molnár-Perl, I. (2015). The role of derivatization techniques in the analysis of glyphosate and aminomethyl-phosphonic acid by chromatography. Microchemical Journal, 121, 99–106.CrossRefGoogle Scholar
  4. Ascolani Yael, J., Fuhr, J. D., Bocan, G. A., Daza Millone, A., Tognalli, N., dos Santos Afonso, M., & Martiarena, M. L. (2014). Abiotic degradation of glyphosate into aminomethylphosphonic acid in the presence of metals. Journal of Agricultural and Food Chemistry, 62, 9651–9656.CrossRefGoogle Scholar
  5. Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098–3100.CrossRefGoogle Scholar
  6. Bernards, M. L., Thelen, K. D., Penner, D., Muthukumaran, R. B., & McCracken, J. L. (2005). Glyphosate interaction with manganese in tank mixtures and its effect on glyphosate absorption and translocation. Weed Science, 53, 787–794.CrossRefGoogle Scholar
  7. Caetano, M. S., Ramalho, T. C., Botrel, D. F., da Cunha, E. F. F., & de Mello, W. C. (2012). Understanding the inactivation process of organophosphorus herbicides: A DFT study of glyphosate metallic complexes with Zn2+, Ca2+, Mg2+, Cu2+, Co3+, Fe3+, Cr3+, and Al3+. International Journal of Quantum Chemistry, 112, 2752–2762.CrossRefGoogle Scholar
  8. Catrinck, T. C. P. G., Dias, A., Aguiar, M. C. S., Silvério, F. O., Fidêncio, P. H., & Pinho, G. P. (2014). A simple and efficient method for derivatization of glyphosate and AMPA using 9-fluorenylmethyl chloroformate and spectrophotometric analysis. Journal of the Brazilian Chemical Society, 25(7), 1194–1199.Google Scholar
  9. Daniele, P. G., De Stefano, C., Prenesti, E., & Sammartano, S. (1997). Copper (II) complexes of N-(phosphonomethyl) glycine in aqueous solution: a thermodynamic and spectrophotometric study. Talanta, 45, 425–431.CrossRefGoogle Scholar
  10. Franz, J. E. (1974). N-(Phosphonomethyl) glycine phytotoxicant composition. United States Patent No. 3,799,758. St. Louis: Monsanto Company.Google Scholar
  11. Freuze, I., Jadas-Hecart, A., Royer, A., & Communal, P.-Y. (2007). Influence of complexation phenomena with multivalent cations on the analysis of glyphosate and aminomethyl phosphonic acid in water. Journal of Chromatography A, 1175(2), 197–206.CrossRefGoogle Scholar
  12. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2013). Gaussian 09 Revis. Wallingford: D01 Gaussian Inc..Google Scholar
  13. Furia, T. E. (2006). Stability constants (log K1) of various metal chelates. In CRC handbook of food additives, 2nd edn 1972, from:
  14. Ganson, R. J., & Jensen, R. A. (1988). The essential role of cobalt in the inhibition of the cytosolic isozyme of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Nicotiana silvestris by glyphosate. Archives of Biochemistry and Biophysics, 260(1), 85–93.CrossRefGoogle Scholar
  15. Glass, R. L. (1984). Metal complex formation by glyphosate. Journal of Agricultural and Food Chemistry, 32, 1249–1253.CrossRefGoogle Scholar
  16. Global Industry Analysts (2011). Global glyphosate market to reach 1.35 million metric tons by 2017. According to a new report by Global Industry Analysts, Inc.Google Scholar
  17. Grimme, S., Ehrlich, S., & Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32, 1456–1465.CrossRefGoogle Scholar
  18. Gros, P., Ahmed, A. A., Kühn, O., & Leinweber, P. (2017). Glyphosate binding in soil as revealed by sorption experiments and quantum-chemical modelling. Science of the Total Environment, 586, 527–535.CrossRefGoogle Scholar
  19. Hanke, I., Singer, H., & Hollender, H. (2008). Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatographytandem mass spectrometry: performance tuning of derivatization, enrichment and detection. Analytical and Bioanalytical Chemistry, 391, 2265–2276.CrossRefGoogle Scholar
  20. Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). Self-consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 56, 2257–2261.CrossRefGoogle Scholar
  21. Heineke, D., Franklin, S. F., & Raymond, K. N. (1994). Coordination chemistry of glyphosate: structural and spectroscopic characterization of bis (glyphosate) metal (III) complexes. Inorganic Chemistry, 33, 2413–2421.CrossRefGoogle Scholar
  22. Hensley, D. L., Beuerman, D. S. N., & Carpenter, P. L. (1978). The inactivation of glyphosate by various soils and metal salts. Weed Research, 18, 287–291.CrossRefGoogle Scholar
  23. Ibanez, M., Pozo, O. J., Sancho, J. V., Lopez, F. J., & Hernandez, F. (2006). Re-evaluation of glyphosate determination in water by liquid chromatography coupled to electrospray tandem mass spectrometry. Journal of Chromatography A, 1134, 51–55.CrossRefGoogle Scholar
  24. Jaisi, D. P., Li, H., Wallace, A. F., Paudel, P., Sun, M., Balakrishna, A., & Lerch, R. N. (2016). Mechanisms of bond cleavage during manganese oxide and UV degradation of glyphosate: results from phosphate oxygen isotopes and molecular simulations. Journal of Agricultural and Food Chemistry, 64, 8474–8482.CrossRefGoogle Scholar
  25. Kobylecka, J., Ptaszynski, B., & Zwolinska, A. (2000). Synthesis and properties of complexes of Lead (II), cadmium (II), and zinc (II) with N-phosphonomethylglycine. Monatshefte für Chemie, 131, 1–11.CrossRefGoogle Scholar
  26. Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789.CrossRefGoogle Scholar
  27. Lundager Madsen, H. E., Christensen, H. H., & Gottlieb-Petersen, C. (1978). Stability constants of copper (II), zinc, manganese (II), calcium and magnesium complexes of N-(phosphonomethyl) glycine (glyphosate). Acta Chemica Scandinavia, A, 32, 79–83.CrossRefGoogle Scholar
  28. Morillo, E., Undabeytia, T., Maqueda, C., & Ramos, A. (2002). The effect of dissolved glyphosate upon the sorption of copper by three selected soils. Chemosphere, 47, 747–752.CrossRefGoogle Scholar
  29. Popov, K., Rönkkömäki, H., & Lajunen, L. H. J. (2001). Critical evaluation of stability constants of phosphonic. Pure and Applied Chemistry, 73(10), 1641–1677.CrossRefGoogle Scholar
  30. Ptaszyński, B., & Zwolińska, A. (2001). Synthesis and properties of solid complexes of lanthanum, cerium, neodymium and erbium with N-phosphonomethylglycine. Polish Journal of Environmental Studies, 10(4), 257–262.Google Scholar
  31. Purgel, M., Takács, Z., Jonsson, C. M., Nagy, L., Andersson, I., Bányai, I., Pápai, I., Persson, P., Sjöberg, S., & Tóth, I. (2009). GLP complexation to aluminium (III). An equilibriumand structural study in solution using potentiometry, multinuclear NMR, ATR–FTIR, ESI-MS and DFT calculations. Journal of Inorganic Biochemistry, 103, 1426–1438.CrossRefGoogle Scholar
  32. Ramirez, C. E., Bellmund, S., & Gardinali, P. R. (2014). A simple method for routine monitoring of glyphosate and its main metabolite in surface waters using lyophilization and LC-FLD + MS/MS. Case study: canals with influence on Biscayne National Park. Science of the Total Environment, 496, 389–401.CrossRefGoogle Scholar
  33. Reichert, N., Adolph, W., Reding, A.-M., Belvaux, X. (2006). European round robin study for glyphosate residues in surface water and ground water. SGS Institut Fresenius.Google Scholar
  34. Sancho, J. V., Lopez, F. J., Hernandeza, F., Hogendoorn, E. A., & van Zoonen, P. (1994). Rapid determination of glufosinate in environmental water samples using 9-fluorenylmethoxycarbonyl precolumn derivatization, large-volume injection and coupled-column liquid chromatography. Journal of Chromatography A, 678, 59–67.CrossRefGoogle Scholar
  35. Si, Y.-B., Xiang, Y., Tian, C., Si, X.-Y., Zhou, J., & Zhou, D.-M. (2013). Complex interaction and adsorption of glyphosate and Lead in soil. Soil and Sediment Contamination: An International Journal, 22(1), 72–84.CrossRefGoogle Scholar
  36. Skeff, W., Recknagel, C., & Schulz-Bull, D. E. (2016). The influence of salt matrices on the reversed-phase liquid chromatography behavior and electrospray ionization tandem mass spectrometry detection of glyphosate, glufosinate, aminomethylphosphonic acid and 2-aminoethylphosphonic acid in water. Journal of Chromatography A, 1475, 64–73.CrossRefGoogle Scholar
  37. Subramaniam, V., & Hoggard, P. E. (1988). Metal complexes of glyphosate. Journal of Agricultural and Food Chemistry, 36(6), 1326–1329.CrossRefGoogle Scholar
  38. Toy, A. D. F., Forest, P., Uhing, E. H. (1964). Aminomethylenphosphonic acids, salts thereof, and process for their production. United States Patent office, Patent No. 3,160,632.Google Scholar
  39. Undabeytia, T., Cheshire, M. V., & McPhail, D. (1996). Interaction of the herbicide glyphosate with copper in humic complexes. Chemosphere, 32(7), 1245–1250.CrossRefGoogle Scholar
  40. Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris, J. G., Jr. (2018). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, 616–617, 255–268.CrossRefGoogle Scholar
  41. Waiman, C. V., Avena, M. J., Garrido, M., Fernández Band, B., & Zanini, G. P. (2012). A simple and rapid spectrophotometric method to quantify the herbicide glyphosate in aqueous media. Application to adsorption isotherms on soils and goethite. Geoderma, 170, 154–158.CrossRefGoogle Scholar
  42. Wang, Y., Dongmei, Z., Ruijuan, S., & Huaiman, C. (2004). Toxicity of the interaction of glyphosate and cadmium to wheat. Frontiers in Ecology and the Environment, 13(2), 158–160.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Soil ScienceUniversity of RostockRostockGermany
  2. 2.Institute of PhysicsUniversity of RostockRostockGermany
  3. 3.Department of Life, Light, and Matter (LLM)University of RostockRostockGermany

Personalised recommendations