Advertisement

Theoretical environmental risk assessment of ten used pharmaceuticals in Belo Horizonte, Brazil

  • Arthur Couto NevesEmail author
  • Marcos Paulo Gomes Mol
Article

Abstract

An evaluation of the environmental risk assessment (ERA) proposed by European Medicines Agency (EMA) and its applicability in Brazil was performed on ten of Belo Horizonte’s most pharmaceuticals by the Brazilian National Health Service (SUS). The predicted environmental concentrations (PECs) was proposed, with some refinements to a better representation of the city of study. All PECs obtained were compared only to measured environmental concentrations around the world, due to the lack available data in the city of study and in Brazil. During the performance of EMA’s guideline, the risk quotient (RQ) of impact was established through the ratio of PECs and predicted no-effect concentrations (PNECs). The PECs obtained in more refined phases show the initial evaluation of EMA’s guideline, possible subdimensions, and the potential risks. The RQ for all studied pharmaceuticals ranges from clonazepam (1.26) to losartan (5457.45). These results indicate potential risks to the aquatic life present in the streams that receive the wastewater treatment plant’s effluent. This risk can be spread since the streams carry these contaminants to other water bodies that undergo to multiple cities of Brazil, and even after dilutions, it can still be potentially toxic to the biotic life. ERA shows that it can be a useful tool for a better understanding and modeling of pharmaceuticals fate in the environment, specifically in water bodies. In addition, the usage of this model shows to be a useful tool that determines which contaminant should follow a more thorough study since the detection and analysis of pharmaceuticals in environmental samples are costly and technically challenging.

Keywords

Drugs Microcontaminants Environment risk assessment 

Notes

Acknowledgements

To Fundação Ezequiel Dias—FUNED for its support in conducting the research, in particular the Diretoria de Pesquisa e Desenvolvimento (DPD).

Funding information

This work is financially supported by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG.

Supplementary material

10661_2019_7386_MOESM1_ESM.xlsx (18 kb)
ESM. 1 (XLSX 18 kb)
10661_2019_7386_MOESM2_ESM.xlsx (41 kb)
ESM. 2 (XLSX 40 kb)
10661_2019_7386_MOESM3_ESM.xlsx (22 kb)
ESM. 3 (XLSX 21 kb)

References

  1. Al-Odaini, N. A., Zakaria, M. P., Zali, M. A., Juahir, H., Yaziz, M. I., & Surif, S. (2012). Application of chemometrics in understanding the spatial distribution of human pharmaceuticals in surface water. Environmental Monitoring and Assessment., 184, 6735–6748.  https://doi.org/10.1007/s10661-011-2454-3.CrossRefGoogle Scholar
  2. Alder, A. C., Schaffner, C., Majewsky, M., Klasmeier, J., & Fenner, K. (2010). Fate of β-blocker human pharmaceuticals in surface water: Comparison of measured and simulated concentrations in the Glatt Valley Watershed. Switzerland. Water Research, 44, 936–948.  https://doi.org/10.1016/j.watres.2009.10.002.CrossRefGoogle Scholar
  3. ANA. (2017). Atlas Esgotos: Despoluição de Bacias Hidrográficas.Google Scholar
  4. Anses. (2011). Campagne nationale d’occurence des résidus de médicaments dans les eaux destinées à la consommation humaine 31.Google Scholar
  5. Ashley, C., & Currie, A. (2011). The renal drug handbook. Australian Journal of Psychology, 36, 454–454.  https://doi.org/10.1080/00049538408255324.CrossRefGoogle Scholar
  6. Aubakirova, B., Beisenova, R., & Boxall, A. B. A. (2017). Prioritization of pharmaceuticals based on risks to aquatic environments in Kazakhstan. Integrated Environmental Assessment and Management, 13, 832–839.  https://doi.org/10.1002/ieam.1895.CrossRefGoogle Scholar
  7. Batt, A. L., Kostich, M. S., & Lazorchak, J. M. (2008). Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid-phase extraction and UPLC-MS/MS. Analytical Chemistry., 80, 5021–5030.CrossRefGoogle Scholar
  8. Belo Horizonte. (2016). Plano Municipal de Saneamento de Belo Horizonte: 2016/2019. Belo Horizonte: Prefeitura de Belo Horizonte.Google Scholar
  9. Blair, B., Nikolaus, A., Hedman, C., Klaper, R., & Grundl, T. (2015). Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere, 134, 395–401.CrossRefGoogle Scholar
  10. Böger, B., Amaral, B., Do Estevão, P. L. D. S., Wagner, R., Peralta-Zamora, P. G., Gomes, E. C., Böger, B., Amaral, B., do Estevão, P. L., et al. (2018). Determination of carbamazepine and diazepam by SPE-HPLC-DAD in Belém River water. Curitiba-PR/Brazil. Environmental and Water Resources Research Journal of Applied Sciences, 13, 1.  https://doi.org/10.4136/ambi-agua.2196.CrossRefGoogle Scholar
  11. Bouissou-Schurtz, C., Houeto, P., Guerbet, M., Bachelot, M., Casellas, C., Mauclaire, A. C., Panetier, P., Delval, C., & Masset, D. (2014). Ecological risk assessment of the presence of pharmaceutical residues in a French national water survey. Regulatory Toxicology and Pharmacology., 69, 296–303.  https://doi.org/10.1016/j.yrtph.2014.04.006.CrossRefGoogle Scholar
  12. Brazil. Vigilância Sanitária [Sanitary Surveillance Agency]. (2017). Relação de Fármacos Consumidos em Belo Horizonte. Belo Horizonte.Google Scholar
  13. Bueno, M. M., Gomez, M. J., Herrera, S., Hernando, M. D., Agüera, A., & Fernández-Alba, A. R. (2012). Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: two years pilot survey monitoring. Environmental Pollution, 164, 267–273.CrossRefGoogle Scholar
  14. Carballa, M., Omil, F., Lema, J. M., Llompart, M., García-Jares, C., Rodríguez, I., Gómez, M., & Ternes, T. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 38, 2918–2926.  https://doi.org/10.1016/j.watres.2004.03.029.CrossRefGoogle Scholar
  15. Castiglioni, S., Bagnati, R., Fanelli, R., Pomati, F., Calamari, D., & Zuccato, E. (2006). Removal of pharmaceuticals in sewage treatment plants in Italy. Environmental Science & Technology, 40(1), 357–363.CrossRefGoogle Scholar
  16. Celle-Jeanton, H., Schemberg, D., Mohammed, N., Huneau, F., Bertrand, G., Lavastre, V., & Le Coustumer, P. (2014). Evaluation of pharmaceuticals in surface water: Reliability of PECs compared to MECs. Environment International, 73, 10–21.  https://doi.org/10.1016/j.envint.2014.06.015.CrossRefGoogle Scholar
  17. Costa, M. A. M. (2008). Reflexões sobre a política participativa das águas: o caso CBH Velhas/MG.Google Scholar
  18. Dong, Z., Senn, D. B., Moran, R. E., & Shine, J. P. (2013). Prioritizing environmental risk of prescription pharmaceuticals. Regulatory Toxicology and Pharmacology, 65(1), 60–67.CrossRefGoogle Scholar
  19. ECHA (2008). Guidance on information requirements and chemical safety assessment. Chapter R. 17: Estimation of exposure from articles.Google Scholar
  20. EMA (2018). European Medicines Agency—find medicine—medicines landing jsp page http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landing_page.jsp&mid=WC0b01ac058001ce7e. Accessed 20 May 2018
  21. EMA. (2006). Guideline on the Environmental Risk Assessment of Medicinal 1–12. Acessed 17 May 2018.Google Scholar
  22. Funed (2009). Guia de Medicamentos da Funed [Funed’s drugs guideline] (2009). Belo Horizonte.Google Scholar
  23. Gamarra, J. S., Godoi, A. F. L., de Vasconcelos, E. C., de Souza, K. M. T., & Ribas de Oliveira, C. M. (2015). Environmental risk assessment (ERA) of diclofenac and ibuprofen: a public health perspective. Chemosphere, 120, 462–469.  https://doi.org/10.1016/j.chemosphere.2014.08.020.CrossRefGoogle Scholar
  24. Ginebreda, A., Muñoz, I., de Alda, M. L., Brix, R., López-Doval, J., & Barceló, D. (2010). Environmental risk assessment of pharmaceuticals in rivers: relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environment International., 36, 153–162.  https://doi.org/10.1016/j.envint.2009.10.003.CrossRefGoogle Scholar
  25. Gros, M., Petrović, M., Ginebreda, A., & Barceló, D. (2010). Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environment international, 36(1), 15–26.CrossRefGoogle Scholar
  26. Grung, M., Källqvist, T., Sakshaug, S., Skurtveit, S., & Thomas, K. V. (2008). Environmental assessment of Norwegian priority pharmaceuticals based on the EMEA guideline. Ecotoxicology and Environmental Safety., 71, 328–340.  https://doi.org/10.1016/j.ecoenv.2007.10.015.CrossRefGoogle Scholar
  27. Gunnarsson, B., & Wennmalm, Å. (2008). Drug design should involve consideration of environmental risk and hazard. Letters in Drug Design & Discovery., 5, 232–235.  https://doi.org/10.2174/157018008784619942.CrossRefGoogle Scholar
  28. Hernando, M. D., Mezcua, M., Fernández-Alba, A. R., & Barceló, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta., 69, 334–342.  https://doi.org/10.1016/j.talanta.2005.09.037.CrossRefGoogle Scholar
  29. Huang, M., Li, Y., & Gu, G. (2008). The effects of hydraulic retention time and sludge retention time on the fate of di-(2-ethylhexyl) phthalate in a laboratory-scale anaerobic-anoxic-aerobic activated sludge system. Bioresource Technology., 99, 8107–8111.  https://doi.org/10.1016/j.biortech.2008.03.031.CrossRefGoogle Scholar
  30. Huschek, G., Hansen, P. D., Maurer, H. H., Krengel, D., & Kayser, A. (2004). Environmental risk assessment of medicinal products for human use according to European Commission recommendations. Environmental Toxicology and Pharmacology, 19, 226–240.  https://doi.org/10.1002/tox.20015.CrossRefGoogle Scholar
  31. IBGE. (2017). IBGE Belo Horizonte. https://cidades.ibge.gov.br/brasil/mg/belo-horizonte/panorama. Acessed 17 May 2018.
  32. Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M., & Barcelo, D. (2011). Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research, 45, 1165–1176.  https://doi.org/10.1016/j.watres.2010.11.010.CrossRefGoogle Scholar
  33. Jones, O. A. H., Voulvoulis, N., & Lester, J. N. (2002). Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Research, 36, 5013–5022.  https://doi.org/10.1016/S0043-1354(02)00227-0.CrossRefGoogle Scholar
  34. Jones, V., Gardner, M., & Ellor, B. (2014). Concentrations of trace substances in sewage sludge from 28 wastewater treatment works in the UK. Chemosphere, 111, 478–484.  https://doi.org/10.1016/j.chemosphere.2014.04.025.CrossRefGoogle Scholar
  35. K’oreje, K. O., Vergeynst, L., Ombaka, D., De Wispelaere, P., Okoth, M., Van Langenhove, H., & Demeestere, K. (2016). Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere, 149, 238–244.  https://doi.org/10.1016/J.CHEMOSPHERE.2016.01.095.CrossRefGoogle Scholar
  36. Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2009). The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Research, 43, 363–380.  https://doi.org/10.1016/j.watres.2008.10.047.CrossRefGoogle Scholar
  37. Kosma, C. I., Lambropoulou, D. A., & Albanis, T. A. (2014). Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Science of the Total Environment, 466, 421–438.CrossRefGoogle Scholar
  38. Kostich, M. S., Batt, A. L., & Lazorchak, J. M. (2014). Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environmental Pollution., 184, 354–359.  https://doi.org/10.1016/j.envpol.2013.09.013.CrossRefGoogle Scholar
  39. Kroes, R., Kleiner, J., & Renwick, A. (2005). The threshold of toxicological concern concept in risk assessment. Toxicological Sciences., 86, 226–230.  https://doi.org/10.1093/toxsci/kfi169.CrossRefGoogle Scholar
  40. Lees, K., Fitzsimons, M., Snape, J., Tappin, A., & Comber, S. (2016). Pharmaceuticals in soils of lower income countries: physico-chemical fate and risks from wastewater irrigation. Environment International., 94, 712–723.  https://doi.org/10.1016/j.envint.2016.06.018.CrossRefGoogle Scholar
  41. Loos, R., Carvalho, R., António, D. C., Comero, S., Locoro, G., Tavazzi, S., Paracchini, B., Ghiani, M., Lettieri, T., Blaha, L., Jarosova, B., Voorspoels, S., Servaes, K., Haglund, P., Fick, J., Lindberg, R. H., Schwesig, D., & Gawlik, B. M. (2013). EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research, 47, 6475–6487.  https://doi.org/10.1016/j.watres.2013.08.024.CrossRefGoogle Scholar
  42. López-Serna, R., Petrović, M., & Barceló, D. (2012). Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro River basin (NE Spain). Science of the Total Environment., 440, 280–289.  https://doi.org/10.1016/j.scitotenv.2012.06.027.CrossRefGoogle Scholar
  43. Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S., & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment., 473–474, 619–641.  https://doi.org/10.1016/j.scitotenv.2013.12.065.CrossRefGoogle Scholar
  44. Montagner, C. C., Jardim, W. F., Von der Ohe, P. C., & Umbuzeiro, G. A. (2014). Occurrence and potential risk of triclosan in freshwaters of São Paulo. Brazil-the need for regulatory actions. Environmental Science and Pollution Research., 21, 1850–1858.  https://doi.org/10.1007/s11356-013-2063-5.CrossRefGoogle Scholar
  45. O’Brien, E., & Dietrich, D. R. (2004). Hindsight rather than foresight: reality versus the EU draft guideline on pharmaceuticals in the environment. Trends in Biotechnology., 22, 326–330.  https://doi.org/10.1016/j.tibtech.2004.05.003.CrossRefGoogle Scholar
  46. Oosterhuis, M., Sacher, F., & ter Laak, T. L. (2013). Prediction of concentration levels of metformin and other high consumption pharmaceuticals in wastewater and regional surface water based on sales data. Science of the Total Environment, 442, 380–388.CrossRefGoogle Scholar
  47. Pailler, J. Y., Krein, A., Pfister, L., Hoffmann, L., & Guignard, C. (2009). Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg. Science of the Total Environment., 407, 4736–4743.  https://doi.org/10.1016/j.scitotenv.2009.04.042.CrossRefGoogle Scholar
  48. Pereira, A. M. P. T., Silva, L. J. G., Lino, C. M., Meisel, L. M., & Pena, A. (2017). A critical evaluation of different parameters for estimating pharmaceutical exposure seeking an improved environmental risk assessment. Science of the Total Environment., 603–604, 226–236.  https://doi.org/10.1016/j.scitotenv.2017.06.022.CrossRefGoogle Scholar
  49. Pereira, A. M., Silva, L. J., Meisel, L. M., Lino, C. M., & Pena, A. (2015). Environmental impact of pharmaceuticals from Portuguese wastewaters: geographical and seasonal occurrence, removal and risk assessment. Environmental Research, 136, 108–119.CrossRefGoogle Scholar
  50. PubChem. (2018). PubChem compound—NCBI .https://www.ncbi.nlm.nih.gov/pccompound. Acessed 17 May 2018.
  51. Radjenovic, J., Petrovic, M., & Barceló, D. (2007). Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Analytical and bioanalytical chemistry, 387(4), 1365-1377.Google Scholar
  52. Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93, 1268–1287.  https://doi.org/10.1016/j.chemosphere.2013.07.059.CrossRefGoogle Scholar
  53. Robledo Zacarías, V. H., Velázquez Machuca, M. A., Montañez Soto, J. L., Pimentel Equihua, J. L., Vallejo Cardona, A. A., López Calvillo, M. D., & Venegas González, J. (2017). Hidroquímica y contaminantes emergentes en aguas residuales urbano industriales de Morelia, Michoacán, México. Revista internacional de contaminación ambiental, 33(2), 221–235.CrossRefGoogle Scholar
  54. Rodil, R., Quintana, J. B., López-Mahía, P., Muniategui-Lorenzo, S., & Prada-Rodríguez, D. (2009). Multi-residue analytical method for the determination of emerging pollutants in water by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Journal of Chromatography. A, 1216, 2958–2969.  https://doi.org/10.1016/j.chroma.2008.09.041.CrossRefGoogle Scholar
  55. Rosal, R., Rodríguez, A., Perdigón-Melón, J. A., Petre, A., García-Calvo, E., Gómez, M. J., Agüera, A., & Fernández-Alba, A. R. (2010). Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Research, 44(2), 578–588.CrossRefGoogle Scholar
  56. Santos, J. L., Aparicio, I., & Alonso, E. (2007). Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain). Environment International., 33, 596–601.  https://doi.org/10.1016/j.envint.2006.09.014.CrossRefGoogle Scholar
  57. Santos, J. L., Aparicio, I., Callejón, M., & Alonso, E. (2009). Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). Journal of Hazardous Materials., 164, 1509–1516.  https://doi.org/10.1016/j.jhazmat.2008.09.073.CrossRefGoogle Scholar
  58. SNIS. (2016). Diagnóstico AE 2016—SNIS—Sistema Nacional de Informações Sobre Saneamento. URL http://www.snis.gov.br/diagnostico-agua-e-esgotos/diagnostico-ae-2016. Accessed 17 May 2018.
  59. Sodré, F. F., Pescara, I. C., Montagner, C. C., & Jardim, W. F. (2010). Assessing selected estrogens and xenoestrogens in Brazilian surface waters by liquid chromatography-tandem mass spectrometry. Microchemical Journal, 96, 92–98.  https://doi.org/10.1016/j.microc.2010.02.012.CrossRefGoogle Scholar
  60. Sousa, M. A., Gonçalves, C., Cunha, E., Hajšlová, J., & Alpendurada, M. F. (2011). Cleanup strategies and advantages in the determination of several therapeutic classes of pharmaceuticals in wastewater samples by SPE–LC–MS/MS. Analytical and Bioanalytical Chemistry, 399(2), 807–822.CrossRefGoogle Scholar
  61. Stasinakis, A. S., Kordoutis, C. I., Tsiouma, V. C., Gatidou, G., & Thomaidis, N. S. (2010). Removal of selected endocrine disrupters in activated sludge systems: effect of sludge retention time on their sorption and biodegradation. Bioresource Technology., 101, 2090–2095.  https://doi.org/10.1016/j.biortech.2009.10.086.CrossRefGoogle Scholar
  62. Stuer-Lauridsen, F., Birkved, M., Hansen, L. P., Holten Lützhøft, H. C., & Halling-Sørensen, B. (2000). Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use. Chemosphere, 40, 783–793.  https://doi.org/10.1016/S0045-6535(99)00453-1.CrossRefGoogle Scholar
  63. Stumpf, M., Ternes, T. A., Wilken, R. D., Rodrigues, S. V., & Baumann, W. (1999). Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Science of the Total Environment., 225, 135–141.  https://doi.org/10.1016/S0048-9697(98)00339-8.CrossRefGoogle Scholar
  64. Suarez, S., Lema, J. M., & Omil, F. (2009). Pre-treatment of hospital wastewater by coagulation-flocculation and flotation. Bioresource Technology., 100, 2138–2146.  https://doi.org/10.1016/j.biortech.2008.11.015.CrossRefGoogle Scholar
  65. Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32(11), 3245–3260.CrossRefGoogle Scholar
  66. TGD. (2003). Technical guidance document on risk assessment. European Chemicals Bureau. Part II. 7–179.Google Scholar
  67. Togola, A., & Budzinski, H. (2008). Multi-residue analysis of pharmaceutical compounds in aqueous samples. Journal of Chromatography A., 1177, 150–158.  https://doi.org/10.1016/j.chroma.2007.10.105.CrossRefGoogle Scholar
  68. Valcárcel, Y., Alonso, S. G., Rodríguez-Gil, J. L., Maroto, R. R., Gil, A., & Catalá, M. (2011). Analysis of the presence of cardiovascular and analgesic/anti-inflammatory/antipyretic pharmaceuticals in river- and drinking-water of the Madrid Region in Spain. Chemosphere., 82, 1062–1071.  https://doi.org/10.1016/j.chemosphere.2010.10.041.CrossRefGoogle Scholar
  69. Von Sperling, M. (2008). Biological wastewater treatment: principles, modelling and design. IWA Publishing.Google Scholar
  70. Wahlberg, C., Björlenius, B., & Paxéus, N. (2010). Läkemedelsrester i Stockholms vattenmiljö 142.Google Scholar
  71. WHO (2018). WHOCC—ATC/DDD Index. https://www.whocc.no/atc_ddd_index/. Acessed 17 May 2018.
  72. Zhang, Y., & Zhou, J. L. (2008). Occurrence and removal of endocrine disrupting chemicals in wastewater. Chemosphere, 73, 848–853.  https://doi.org/10.1016/j.chemosphere.2008.06.001.CrossRefGoogle Scholar
  73. Zorita, S., Mårtensson, L., & Mathiasson, L. (2009). Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Science of the Total Environment, 407(8), 2760–2770.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arthur Couto Neves
    • 1
    • 2
    Email author
  • Marcos Paulo Gomes Mol
    • 1
  1. 1.Diretoria de Pesquisa e DesenvolvimentoFundação Ezequiel Dias – FUNEDCidade Belo HorizonteBrazil
  2. 2.Centro Federal de Educação Tecnológica de Minas Gerais – CEFET-MGBelo HorizonteBrazil

Personalised recommendations