Advertisement

Interplay of phosphorus doses, cyanobacterial inoculation, and elevated carbon dioxide on yield and phosphorus dynamics in cowpea

  • Sumit Kumar Dey
  • B. ChakrabartiEmail author
  • T. J. Purakayastha
  • Radha Prasanna
  • R. Mittal
  • S. D. Singh
  • H. Pathak
Article
  • 14 Downloads

Abstract

Phosphorus (P) demand is likely to increase especially in legumes to harness greater benefits of nitrogen fixation under elevated CO2 condition. In the following study, seed yield and seed P uptake in cowpea increased by 26.8% and 20.9%, respectively, under elevated CO2 level. With an increase in phosphorus dose up to 12 mg kg−1, seed yield enhanced from 2.6 to 5.4 g plant−1. P application and cyanobacterial inoculation increased the microbial activity of soil, leading to increased availability of P. Under elevated CO2 condition, microbial activity, measured as dehydrogenase, acid phosphatase, and alkaline phosphatase activities showed stimulation. Soil available P also increased under elevated CO2 condition and was stimulated by both P application and cyanobacterial inoculation. Higher P uptake in elevated CO2 condition led to lower values of inorganic P in soil. Stepwise regression analysis showed that aboveground P uptake, soil available P, and alkaline phosphatase activity of soil influenced the yield while available P, and organic and inorganic P influenced the aboveground P uptake of the crop. This study revealed that under elevated CO2 condition, P application and cyanobacterial inoculation facilitated P uptake and yield, mediated through enhanced availability of nutrients, in cowpea crop.

Keywords

Elevated CO2 Legume Soil P P uptake Cyanobacteria 

Notes

Acknowledgements

The first author thanks the PG School and Director, ICAR-IARI, for providing a fellowship during the course of study. Partial funding was obtained from the National Innovations in Climate Resilient Agriculture, Indian Council of Agricultural Research.

Supplementary material

10661_2019_7378_MOESM1_ESM.pdf (271 kb)
Supplementary Figure 1 Aboveground P uptake in cowpea crop as affected by elevated CO2 and P doses. (PDF 271 kb)
10661_2019_7378_MOESM2_ESM.pdf (99 kb)
Supplementary Figure 2 Effect of elevated CO2, cyanobacterial inoculation and phosphorus doses on dehydrogenase activity (μg TPF g−1d−1) in soil under Cowpea crop. [T1: ambient CO2, without cyanobacterium, 0 mg kg−1 P, T2: ambient CO2, without cyanobacterium, 8 mg kg−1 P, T3: ambient CO2, without cyanobacterium, 12 mg kg−1 P, T4: ambient CO2, without cyanobacterium, 16 mg kg−1 P, T5: ambient CO2, without cyanobacterium, 20 mg kg−1 P, T6: ambient CO2, with cyanobacterium, 0 mg kg−1 P, T7: ambient CO2, with cyanobacterium, 8 mg kg−1 P, T8: ambient CO2, with cyanobacterium, 12 mg kg−1 P, T9: ambient CO2, with cyanobacterium, 16 mg kg−1 P, T10: ambient CO2, with cyanobacterium, 20 mg kg−1 P, T11: elevated CO2, without cyanobacterium, 0 mg kg−1 P, T12: elevated CO2, without cyanobacterium, 8 mg kg−1 P, T13: elevated CO2, without cyanobacterium, 12 mg kg−1 P, T14: elevated CO2, without cyanobacterium, 16 mg kg−1 P, T15: elevated CO2, without cyanobacterium, 20 mg kg−1 P, T16: elevated CO2, with cyanobacterium, 0 mg kg−1 P, T17: elevated CO2, with cyanobacterium, 8 mg kg−1 P, T18: elevated CO2, with cyanobacterium, 12 mg kg−1 P, T19: elevated CO2, with cyanobacterium, 16 mg kg−1 P, T20: elevated CO2, with cyanobacterium, 20 mg kg−1 P] (PDF 99 kb)

References

  1. Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351–372.CrossRefGoogle Scholar
  2. Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising (CO2): mechanisms and environmental interactions. Plant Cell Environment, 30, 258–270.CrossRefGoogle Scholar
  3. Badger, M. R., & Price, G. D. (2003). CO2 concentration mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany, 54(383), 609–622.CrossRefGoogle Scholar
  4. BassiriRad, H., Gutschick, V. P., & Lussenhop, J. (2001). Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO2. Oecologia, 126, 305–320.CrossRefGoogle Scholar
  5. Bidyarani, N., Prasanna, R., Babu, S., Hossain, F., & Saxena, A. K. (2016). Enhancement of plant growth and yields in chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiology Research, 188-189, 97–105.CrossRefGoogle Scholar
  6. Centritto, M., & Loreto, F. (2005). Photosynthesis in a changing world: photosynthesis and abiotic stresses. Agriculture, Ecosystems & Environment, 106, 115–117.CrossRefGoogle Scholar
  7. Chakrabarti, B., Singh, S. D., Kumar, S. N., Aggarwal, P. K., Pathak, H., & Nagarajan, S. (2012). Low-cost facility for assessing impact of carbon dioxide on crops. Current Science, 102, 1035–1040.Google Scholar
  8. Chakraborty, K., Uprety, D. C., & Bhaduri, D. (2017). Growth, physiology and biochemical responses of two different Brassica species to elevated CO2. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 87(2), 389–397.CrossRefGoogle Scholar
  9. deGraaff, M. A., van Groenigen, K. J., Six, J., Hungate, B., & van Kessel, C. (2006). Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change Biology, 12, 2077–2209.CrossRefGoogle Scholar
  10. Dey, S. K., Chakrabarti, B., Prasanna, R., Mittal, R., Singh, S. D., & Pathak, H. (2016). Growth and biomass partitioning in mungbean with elevated carbon dioxide, phosphorus levels and cyanobacteria inoculation. Journal of Agrometeorology, 18(1), 7–12.Google Scholar
  11. Dey, S. K., Chakrabarti, B., Prasanna, R., Pratap, D., Singh, S. D., Purakayastha, T. J., & Pathak, H. (2017a). Elevated carbon dioxide level along with phosphorus application and cyanobacterial inoculation enhances nitrogen fixation and uptake in cowpea crop. Archives of Agronomy and Soil Science, 63(13), 1927–1937.CrossRefGoogle Scholar
  12. Dey, S. K., Chakrabarti, B., Prasanna, R., Singh, S. D., Purakayastha, T. J., Datta, A., & Pathak, H. (2017b). Productivity of mungbean (Vigna radiata) with elevated carbon dioxide at various phosphorus levels and cyanobacteria inoculation. Legume Research, 40(3), 497–505.Google Scholar
  13. Drissner, D., Blum, H., Tscherko, D., & Kandeler, E. (2007). Nine years of enriched CO2 changes the function and structural diversity of soil microorganisms in a grassland. European Journal of Soil Science, 58, 260–269.CrossRefGoogle Scholar
  14. Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W. E., Hoosbeek, M. R., Iversen, C. M., Jackson, R. B., Kubiske, M. E., Ledford, J., Liberloo, M., Oren, R., Polle, A., Pritchard, S., Zak, D. R., Schlesinger, W. H., & Ceulemans, R. (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. PNAS, 104, 14014–14019.CrossRefGoogle Scholar
  15. Gentile, R., Dodd, M., Lieffering, M., Brock, S. C., Theobald, P. W., & Newton, P. C. D. (2012). Effects of long-term exposure to enriched CO2 on the nutrient supplying capacity of a grassland soil. Biology and Fertility of Soils, 48, 375–362.CrossRefGoogle Scholar
  16. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327, 812–818.CrossRefGoogle Scholar
  17. Haase, S., Rothe, A., Kania, A., Wasaki, J., Römheld, V., Engels, C., Kandeler, E., & Neumann, G. (2008). Responses to iron limitation in Hordeum vulgare L. as affected by the atmospheric CO2 concentration. Journal of Environmental Quality, 37, 154–1262.CrossRefGoogle Scholar
  18. Hungate, B. A., Stiling, P. D., Dijkstra, P., Johnson, D. W., Ketterer, M. E., Hymus, G. J., Hinkle, C. R., & Drake, B. G. (2004). CO2 elicits long-term decline in nitrogen fixation. Science, 304, 1291–1291.CrossRefGoogle Scholar
  19. IPCC. (2014). Summary for policymakers, In: Climate change, mitigation of climate change, contribution of working group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1–31). Cambridge: Cambridge University Press.Google Scholar
  20. Jackson, M. L. (1956). Soil chemical analysis - advanced course. Published by the author, Dep. of Soil Science, Univ. of Wisconsin, Madison, WI.Google Scholar
  21. Jin, J., Tang, C., Armstrong, R., & Sale, P. (2012). Phosphorus supply enhances the response of legumes to elevated CO2 (FACE) in a phosphorus-deficient vertisol. Plant and Soil, 358, 91–104.CrossRefGoogle Scholar
  22. Jin, J., Tang, C., Armstrong, R., Butterly, C., & Sale, P. (2013). Elevated CO2 temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea. Plant and Soil, 368, 315–328.CrossRefGoogle Scholar
  23. Jin, J., Tang, C., & Sale, P. (2015). The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. Annals of Botany, 116(6), 987–999.CrossRefGoogle Scholar
  24. Karthikeyan, N., Prasanna, R., Nain, L., & Kaushik, B. D. (2007). Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. European Journal of Soil Biology, 43, 23–30.CrossRefGoogle Scholar
  25. Kaushik, B. D., & Venkataraman, G. S. (1979). Effect of algal inoculation on yield and vitamin C content of two varieties of tomato. Plant and Soil, 52, 135–137.CrossRefGoogle Scholar
  26. Klein, D. A., Loh, T. C., & Goulding, R. L. (1971). A rapid procedure to evaluate the dehydrogenase activity of soils low in organic matter. Soil Biology and Biochemistry, 3, 385–387.CrossRefGoogle Scholar
  27. Kogawara, S., Norisada, M., Tange, T., Yagi, H., & Kojima, K. (2006). Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings. Tree Physiology, 26, 25–33.CrossRefGoogle Scholar
  28. Lagomarsino, A., Moscatelli, M. C., Hoosbeek, M. R., de Angelis, P., & Grego, S. (2008). Assessment of soil nitrogen and phosphorous availability under elevated CO2 and N-fertilization in a short rotation poplar plantation. Plant and Soil, 308, 131–147.CrossRefGoogle Scholar
  29. Lin, W., Zhang, F., & Bai, K. (2000). Response of plant rhizosphere to atmospheric CO2 enrichment. Chinese Science Bulletin, 45, 97–100.CrossRefGoogle Scholar
  30. Lottmann, J., Heuer, H., de Vries, J., Mahn, A., Du¨ring, K., Wackernagel, W., Smalla, K., & Berg, G. (2000). Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiology Ecology, 33, 41–49.CrossRefGoogle Scholar
  31. Manjunath, M., Kanchan, A., Ranjan, K., Venkatachalam, S., Prasanna, R., Ramakrishnan, B., Hossain, F., Nain, L., Shivay, Y. S., Rai, A. B., & Singh, B. (2016). Beneficial cyanobacteria and eubacteria synergistically enhance the bioavailability of nutrients and yield of okra. Heliyon, 2(2), e00066.  https://doi.org/10.1016/j.heliyon.CrossRefGoogle Scholar
  32. Martins, L. M. V., Xavier, G. R., Rangel, F. W., Ribeiro, J. R. A., Neves, M. C. P., Morgado, L. B., & Rumjalek, N. G. (2003). Contribution of biological nitrogen fixation to cowpea: a strategy for improving grain yields in the semi-arid regions of Brasil. Biology and Fertility of Soils, 38, 333–339.CrossRefGoogle Scholar
  33. Melillo, J. M., Butler, S., Johnson, J., Mohan, J., Steudler, P., Lux, H., Burrows, E., Bowlers, F., Smith, R., Scott, L., Vario, C., Hill, T., Burton, A., Zhou, Y. M., & Tang, J. (2011). Soil warming, carbon-nitrogen interactions, and forest carbon budgets. PNAS, 108, 9508–9512.CrossRefGoogle Scholar
  34. Norby, R. J., Cotrufo, M. F., Ineson, P., O’Neill, E. G., & Canadell, J. G. (2001). Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia, 127, 153–165.CrossRefGoogle Scholar
  35. Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., & McMurtrie, R. E. (2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability. PNAS, 107, 19368–19373.CrossRefGoogle Scholar
  36. Olsen, S. R., & Sommers, L. E. (1982). In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Phosphorus. In methods of soil analysis, part 2: chemical and microbiological properties (2nd ed., pp. 403–430). Madison: The American Society of Agronomy.Google Scholar
  37. Olsen, S. R., Col, C. V., Watanabe, F., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Dep. of Agric. Circ. 939.Google Scholar
  38. Pramanik, P., Chakrabarti, B., Bhatia, A., Singh, S. D., Maity, A., Aggarwal, P., & Krishnan, P. (2018a). Effect of elevated temperature on soil hydrothermal regimes and growth of wheat crop. Environmental Monitoring and Assessment, 190(4), 217–226.  https://doi.org/10.1007/s10661-018-6576-8.CrossRefGoogle Scholar
  39. Pramanik, P., Chakrabarti, B., Bhatia, A., Singh, S. D., Mridha, N., & Krishnan, P. (2018b). Effect of elevated carbon dioxide on soil hydrothermal regimes and growth of maize crop (Zea mays L.) in semi-arid tropics of Indo-Gangetic Plains. Environmental Monitoring and Assessment, 190, 661.  https://doi.org/10.1007/s10661-018-6988-5.CrossRefGoogle Scholar
  40. Prasanna, R., Triveni, S., Bidyarani, N., Babu, S., Yadav, K., Adak, A., Khetarpal, S., Pal, M., Shivay, Y. S., & Saxena, A. K. (2014). Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Archives of Agronomy and Soil Science, 60, 349–366.CrossRefGoogle Scholar
  41. Prasanna, R., Babu, S., Bidyarani, N., Kumar, A., Triveni, S., Monga, D., Mukherjee, A. K., Kranthi, S., Gokte-Narkhedhar, N., Adak, A., et al. (2015). Prospecting cyanobacteria fortified composts as plant growth promoting and biocontrol agents in cotton. Experimental Agriculture, 51, 42–65.CrossRefGoogle Scholar
  42. Raj, A., Chakrabarti, B., Pathak, H., Singh, S. D., Mina, U., & Mittal, R. (2016). Growth, yield components and grain yield response of rice to temperature and nitrogen levels. Journal of Agrometeorology, 18(1), 1–6.Google Scholar
  43. Richardson, A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology, 28, 897–906.Google Scholar
  44. Ross, D. J., Newton, P. C. D., & Tate, K. R. (2004). Elevated CO2 effects on herbage production and soil carbon and nitrogen pools and mineralization in a species-rich, grazed pasture on a seasonally dry sand. Plant and Soil, 260, 183–196.CrossRefGoogle Scholar
  45. Saha, S., Sehgala, V. K., Nagarajana, S., & Pal, M. (2012). Impact of elevated atmospheric CO2 on radiation utilization and related plant biophysical properties in pigeon pea (Cajanus cajan L.). Agricultural and Forest Meteorology, 158–159, 63–70.CrossRefGoogle Scholar
  46. Saunders, W. M. H., & Williams, E. G. (1955). Observations on the determination of total organic phosphorus in soils. Journal of Soil Science, 6, 254–267.CrossRefGoogle Scholar
  47. Serraj, R., Sinclair, T. R., & Allen, L. H. (1998). Soybean nodulation and N2 fixation response to drought under carbon dioxide enrichment. Plant Cell and Environment, 21, 491–500.CrossRefGoogle Scholar
  48. Shen, J. B., Yuan, L. X., Zhang, J. L., Haigang, L., Zhaohai, B., Xinping, C., Weifeng, Z., & d Fusuo, Z. (2011). Phosphorus dynamics: from soil to plant. Plant Physiology, 156, 997–1005.CrossRefGoogle Scholar
  49. Singh, S. D., Chakrabarti B., Muralikrishna, K. S., Chaturvedi, A. K., Kumar, V., Mishra, S., & Harit, R. (2013). Yield response of important field crops to elevated air temperature and CO2 levels. Indian J Agri Sc, 83(10), 1009–1012.Google Scholar
  50. Smalla, K., Wieland, G., Buchner, A., Zock, A., Parzy, J., Kaiser, S., Roskot, N., Heuer, H., & Berg, G. (2001). Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Applied and Environmental Microbiology, 67(10), 4742–4751.CrossRefGoogle Scholar
  51. Song, C., Ballantyne, F. I. V., & Smith, V. H. (2014). Enhanced dissolved organic carbon production in aquatic ecosystems in response to elevated atmospheric CO2. Biogeochemistry, 118, 49–60.CrossRefGoogle Scholar
  52. Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301–307.CrossRefGoogle Scholar
  53. Uzoma, A. O., Osunde, A. O., & Bala, A. (2006). Effect of phosphorus and rhizobium inoculation on the yield and yield components of cowpea breeding lines in Minna. In: Proceedings of 31st Annual Conference of Soil Science Society of Nigeria. Zaria: ABU, November 13th – 17th.Google Scholar
  54. vanGroenigen, K. J., Six, J., Hungate, B. A., de Graaff, M. A., van Breemen, N., & van Kessel, C. (2006). Element interactions limit soil carbon storage. PNAS, 103, 6571–6574.CrossRefGoogle Scholar
  55. Walker, T. W., & Adams, A. F. R. (1958). Studies on soil organic matter I. Influence of phosphorus content of parent materials on accumulation of carbon, nitrogen, sulfur and organic phosphorus in grassland soils. Soil Science, 85, 307–318.CrossRefGoogle Scholar
  56. Watanabe, F. S., & Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Proceedings, 29, 677–678.CrossRefGoogle Scholar
  57. Zanetti, S., Hartwig, U. A., Luscher, A., Hebeisen, T., Frehner, M., Fischer, B. U., Hendrey, G. R., Blum, H., & Nosberger, J. (1996). Stimulation of symbiotic N2 fixation in Trifolium repens L. under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiology, 12, 575–583.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations