Advertisement

Effects of intercropping with Bidens species plants on the growth and cadmium accumulation of Ziziphus acidojujuba seedlings

  • Qian Deng
  • Qunxian DengEmail author
  • Yang Wang
  • Lei Li
  • Xingyu Long
  • Si Ren
  • Yue Fan
  • Lijin Lin
  • Hui Xia
  • Dong Liang
  • Jin Wang
  • Huifen Zhang
  • Xiulan Lv
  • Yongqing Wang
Article
  • 41 Downloads

Abstract

To study the effects of intercropping with accumulator plants on heavy metal accumulation of fruit trees, plants of three Bidens species (Bidens pilosa, Bidens biternata, and Bidens parviflora) were intercropped with Ziziphus acidojujuba seedlings under cadmium (Cd)-contaminated conditions (5 mg kg−1). Intercropping with Bidens species increased the biomass and chlorophyll b content of Z. acidojujuba seedlings compared with monoculture, but decreased their carotenoid content. Intercropping with Bidens species also improved the activity of superoxide dismutase, peroxidase, and catalase in Z. acidojujuba seedlings compared with monoculture. Intercropping with Bidens species decreased the Cd content in the roots of Z. acidojujuba seedlings compared with monoculture. Conversely, when intercropped with B. pilosa, B. biternata, and B. parviflora, the Cd content in the shoots of Z. acidojujuba seedlings increased by 62.18%, 60.10%, and 62.18%, respectively, compared with that of those monocultured. When intercropped with Z. acidojujuba seedlings, the Cd accumulation amount of three Bidens species plants were ranked B. parviflora > B. biternata > B. pilosa. Therefore, intercropping with plants of three Bidens species is not suitable for Cd-contaminated jujube orchards.

Keywords

Bidens species Ziziphus acidojujuba seedlings Intercropping Cadmium 

Notes

Acknowledgments

We thank Emma Tacken, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding information

This work was financially supported by the Foundation for Disciplines Construction and Development of Sichuan Agricultural University (03572783) and the Special Action Plan Project of Science, and Technology Rich People and Strong County of Sichuan Province “Integration and Demonstration of Key Technologies for Industrialized Development of Zizyphus jujuba ‘Zhanshangmizao’ of Santai County”.

References

  1. An, L. Y., Pan, Y. H., Wang, Z. B., & Zhu, C. (2011). Heavy metal absorption status of five plant species in monoculture and intercropping. Plant and Soil, 345, 237–245.CrossRefGoogle Scholar
  2. Bao, S. D. (2000). Soil and agricultural chemistry analysis. Beijing: China Agriculture Press (in Chinese).Google Scholar
  3. Behera, M. S., Kundu, D. K., Satpathy, S., Singh, A., Jha, A. K., & Nayak, R. K. (2015). Scope and opportunity of intercropping of medicinal and aromatic plants with sisal plantation. International Journal of Tropical Agriculture, 33, 1771–1773.Google Scholar
  4. Cao, Y. T., Peng, X. H., Lei, Q., & Lin, L. J. (2015). Study on the difference of cadmium accumulation characteristics between two ecotypic accumulator plants and hyperaccumulator plants. Shanxi Journal of Agricultural Sciences, 61, 61–65 (in Chinese).Google Scholar
  5. Chen, L. H., Xu, R., Yang, W. Q., Zhang, J., Hu, X. W., Zhang, M. J., & Gao, S. (2015). Interspecific differences between Cinnamomum camphora and C. longepaniculatum in Cd absorption and tolerance under two levels of Cd pollution. Ecology and Environmental Sciences, 24, 316–322 (in Chinese).Google Scholar
  6. Deng, L., Li, Z., Wang, J., Liu, H. Y., Li, N., Wu, L. H., Hu, P. J., Luo, Y. M., & Christie, P. (2016). Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. International Journal of Phytoremediation, 18, 134–140.CrossRefGoogle Scholar
  7. Dong, L. L., Zhao, X. G., Zhang, S. J., Zhang, Y. H., Liang, N., & Zhao, Y. M. (2009). The difference of plants accumulating heavy metal in polluted soil. Chinese Journal of Soil Science, 40, 374–377.Google Scholar
  8. Fang, L. N., Fang, Z., & Zhong, Y. (2016). Status and countermeasures of Cd-pollution in soil: taking Hunan province for example. Modern Agricultural Sciences and Technology, 7(212–213), 219 (in Chinese).Google Scholar
  9. Fu, D. N., Zhang, J. M., OuYang, H., Yu, Z., Fu, S., & Zhu, B. (2017). Research progress on the cultivation of the fresh jujube. Modern Horticulture, 3, 11–14 (in Chinese).Google Scholar
  10. Garbisu, C., & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77, 229–236.CrossRefGoogle Scholar
  11. Huang, J. J., Li, J. H., Lin, L. J., Jiang, W., & Liao, M. A. (2017a). Effects of intercropping with Bidens species on nutrient absorption of grape seedlings under cadmium stress. In Y. H. Kim (Ed.), Proceedings of the 2017 6th International Conference on Energy and Environmental Protection (pp. 1002–1005).Google Scholar
  12. Huang, J. J., Liu, J., Lin, L. J., Jiang, W., & Liao, M. A. (2017b). Study on cadmium accumulation characteristics of four Bidens species. In: Y. H. Kim (Ed.), Proceedings of the 2017 2nd International Conference on Civil, Transportation and Environmental Engineering (ICCTE 2017) (pp. 477–480).Google Scholar
  13. Huang, J. J., Lin, L. J., Chen, F. B., Wang, T., Liu, L., Liao, M. A., & Ren, W. (2018). Effects of intercropping Bidens L. species on growth and cadmium accumulation of grape seedlings. Journal of Sichuan Agricultural University, 36, 481–487 (in Chinese).Google Scholar
  14. Jiangsu New Medical College. (1977). Dictionary traditional drugs (part two). Shanghai: Shanghai Scientific and Technical Publishers (in Chinese).Google Scholar
  15. Jin, L. J., Li, X. L., Yin, Y., Qin, L., & Liu, R. C. (2012). Investigation of soil lead and cadmium content in rural areas of Sichuan in 2011. Journal of Environment and Health, 29, 1112–1115 (in Chinese).Google Scholar
  16. Li, H. S. (2000). Principles and techniques of plant physiology and biochemistry experiments. Beijing: Higher Educatuin Press (in Chinese).Google Scholar
  17. Lin, W. J., Chen, C. L., & Xu, S. B. (2013). Heavy metal contamination and environmental concerns on orchard at abandoned tungsten mine, southern China. Applied Mechanics and Materials, 295–298, 1609–1614.CrossRefGoogle Scholar
  18. Lin, L. J., Liu, Q., Shi, J., Sun, J., Liao, M. A., & Mei, L. (2014a). Intercropping different varieties of radish can increase cadmium accumulation in radish. Environmental Toxicology and Chemistry, 33, 1950–1955.Google Scholar
  19. Lin, L. J., Liao, M. A., Mei, L. Y., Cheng, J., Liu, J., Luo, L., & Liu, Y. (2014b). Two ecotypes of hyperaccumulators and accumulators affect cadmium accumulation in cherry seedlings by intercropping. Environmental Progress and Sustainable Energy, 33, 1251–1257.Google Scholar
  20. Lin, L. J., Chen, F. B., Wang, J., Liao, M. A., Lv, X. L., Wang, Z. H., Li, H. X., Deng, Q. X., Xia, H., Liang, D., Tang, Y., Wang, X., Lai, Y. S., & Ren, W. (2018). Effects of living hyperaccumulator plants and their straws on the growth and cadmium accumulation of Cyphomandra betacea seedlings. Ecotoxicology and Environmental Safety, 155, 109–116.CrossRefGoogle Scholar
  21. Liu, M. J., Wang, J. R., Liu, P., Zhao, J., Zhao, Z. H., Dai, L., Li, X. S., & Liu, Z. G. (2015a). Historical achievements and frontier advances in the production and research of Chinese jujube (Ziziphus jujuba) in China. Acta Horticulturae Sinica, 42, 1683–1698 (in Chinese).CrossRefGoogle Scholar
  22. Liu, Y. J., Lin, L. J., Jin, Q., & Zhu, X. M. (2015b). Cadmium accumulation and tolerance in the cd-accumulator Capsella bursa-pastoris. Environmental Progress and Sustainable Energy, 34, 663–668.CrossRefGoogle Scholar
  23. Lone, M. I., He, Z. L., Stoffella, P. J., & Yang, X. E. (2008). Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. Journal of Zhejiang University Science B, 9, 210–220.CrossRefGoogle Scholar
  24. Lu, Q. Y., Li, J. H., Chen, F. B., Liao, M. A., Lin, L. J., Tang, Y., Liang, D., Xia, H., Lai, Y. S., Wang, X., Chen, C., & Ren, W. (2017). Effects of mutual intercropping on the cadmium accumulation in accumulator plants Stellaria media, Malachium aquaticum and Galium aparine. Environmental Monitoring and Assessment, 189, 622.CrossRefGoogle Scholar
  25. Lukačová, K. Z., & Lux, A. (2010). Silicon influence on maize, Zea mays L., hybrids exposed to cadmium treatment. Bulletin of Environmental Contamination and Toxicology, 85, 243–250.CrossRefGoogle Scholar
  26. Ma, Q. Q., Yu, X. N., Lin, L. J., & Liao, M. A. (2015). Intercropping different density of Galinsoga parviflora can increase cadmium accumulation in radish. In: Y. H. Kim (Ed.), international conference on advances in energy and environmental science (ICAEES 2015) (pp. 1424–1427).Google Scholar
  27. Midega, C. A. O., Salifu, D., Bruce, T. J., Pittchar, J., Pickett, J. A., & Khan, Z. R. (2014). Cumulative effects and economic benefits of intercropping maize with food legumes on Striga hermonthica infestation. Field Crops Research, 155, 144–152.CrossRefGoogle Scholar
  28. Ngwira, A. R., Aune, J. B., & Mkwinda, S. (2012). On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. Field Crops Research, 132, 149–157.CrossRefGoogle Scholar
  29. Pereira, G. J. G., Molina, S. M. G., Lea, P. J., & Azevedo, R. A. (2002). Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant and Soil, 239, 123–132.CrossRefGoogle Scholar
  30. Qu, Z. Z., & Wang, Y. H. (1993). Chinese fruit trees record-Chinese jujube. Beijing: China Forestry Publishing House (in Chinese).Google Scholar
  31. Romero-Puertas, M. C., Corpas, F. J., Rodríguez-Serrano, M., Gómez, M., del Río, L. A., & Sandalio, L. M. (2007). Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. Journal of Plant Physicology, 164, 1346–1357.CrossRefGoogle Scholar
  32. Su, Y. X., Wang, S. J., Zhao, L. W., & Chen, Q. B. (2016). Study and investigation on orchard soil cadmium contamination status in Tianjin district. Tianjin Agricultural Sciences, 22(20–22), 27 (in Chinese).Google Scholar
  33. Sun, Z. Q., Zhang, Q., & Zhang, H. M. (2005). Effect of low temperature and poor light on chlorophyll content of tomato. Acta Agriculturae Boreali-Sinica, 20, 82–85.Google Scholar
  34. Sun, Y. B., Zhou, Q. X., Liu, W. T., An, J., Xu, Z. Q., & Wang, L. (2009). Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: a potential Cd-hyperaccumulator and As-excluder Bidens pilosa L. Journal of Hazardous Materials, 165, 1023–1028.CrossRefGoogle Scholar
  35. Tang, Y., He, J., Yu, X. N., Xie, Y. D., Lin, L. J., Sun, G. C., Li, H. X., Liao, M. A., Liang, D., Xia, H., Wang, X., Zhang, J., Liu, Z. J., Tu, L. H., & Liu, L. (2017). Intercropping with Solanum nigrum and Solanum photeinocarpum from two ecoclimatic regions promotes growth and reduces cadmium uptake of eggplant seedlings. Pedosphere, 27, 638–644.CrossRefGoogle Scholar
  36. Wang, G., Su, M. Y., Chen, Y. H., Lin, F. F., Luo, D., & Gao, S. F. (2006). Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in Southeastern China. Environmental Pollution, 144, 127–135.CrossRefGoogle Scholar
  37. Wang, S., Li, R. H., Zhang, Z. Q., Feng, J., & Shen, F. (2014). Assessment of the heavy metal pollution and potential ecological hazardous in agricultural soils and crops of Tongguan, Shaanxi province. China Environmental Science, 34, 2313–2320 (in Chinese).Google Scholar
  38. Wang, X. W., Liu, Z. F., Fan, Y., Deng, Q., & Huang, Z. S. (2017). Effects of intercropping with Lolium Perenne and Trifolium Pretense on cadmium accumulations of Pseudostellaria maximowicziana. Sicau Environment, 36, 1–6 (in Chinese).Google Scholar
  39. Wei, S. H., Yang, C. J., & Zhou, Q. X. (2009). Hyperaccumulative characteristics of 7 widely distributing weed species in composite family especially Bidens pilosa to heavy metals. Environmental Science, 29, 2912–2918 (in Chinese).Google Scholar
  40. Xiong, Q. E. (2003). Experimental course of plant physiology. Chengdu: Sichuan Science and Technology Press (in Chinese).Google Scholar
  41. Yang, D. Q., Zhou, Y., Lei, S. R., Li, R. L., Xie, Y. H., Huang, H. L., & Wang, P. (2008). The contamination judgement of Cd in soil and fruits in Panxi district. Southwest China Journal of Agriculture Sciences, 21, 699–701 (in Chinese).Google Scholar
  42. Yang, C., Li, X. S., & Liu, M. J. (2017). Research progress on chemical constituents and utilization of sour jujube (Z. acidojujuba Cheng et Liu). Northern Horticulture, 05, 184–188 (in Chinese).Google Scholar
  43. Yuan, P. G., Gong, Y. Q., Li, B., Wu, Y., & Li, Y. S. (2010). Effects of cadmium stress on the growth and physiological characteristics of Zizyphus spinosus seedlings. Journal of Beijing University of Agriculture, 25, 14–17 (in Chinese).Google Scholar
  44. Zhang, X. F., Xia, H. P., Li, Z., Zhuang, P., & Gao, B. (2010). Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresource Technology, 101, 2063–2066.CrossRefGoogle Scholar
  45. Zhang, C. M., Huang, J., Yin, X., Lian, C. L., & Li, X. G. (2015). Genetic diversity and population structure of sour jujube, Ziziphus acidojujuba. Tree Genetics and Genomes, 11, 809.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Qian Deng
    • 1
  • Qunxian Deng
    • 1
    Email author
  • Yang Wang
    • 1
  • Lei Li
    • 1
  • Xingyu Long
    • 1
  • Si Ren
    • 1
  • Yue Fan
    • 1
  • Lijin Lin
    • 2
  • Hui Xia
    • 2
  • Dong Liang
    • 2
  • Jin Wang
    • 2
  • Huifen Zhang
    • 1
  • Xiulan Lv
    • 2
  • Yongqing Wang
    • 2
  1. 1.College of HorticultureSichuan Agricultural UniversityChengduChina
  2. 2.Institute of Pomology and OlericultureSichuan Agricultural UniversityChengduChina

Personalised recommendations