Advertisement

Polycyclic aromatic hydrocarbons in surface sediments from the Curonian Lagoon and the Nemunas River Delta (Lithuania, Baltic Sea): distribution, origin, and suggestions for the monitoring program

  • Rimutė Stakėnienė
  • Kęstutis Jokšas
  • Arūnas Galkus
  • Eva Raudonytė-SvirbutavičienėEmail author
Article
  • 40 Downloads

Abstract

Curonian Lagoon is the largest lagoon in the Baltic Sea region suffering from a great anthropogenic pressure. Pollution sources within the Nemunas River basin and those within the Klaipėda Port are the main threats to this sensitive water area. For the first time, such a detailed study on 16 priority polycyclic aromatic hydrocarbon distribution, origin, and ecological risks was carried out in the Curonian Lagoon and the Nemunas River Delta. Total PAH concentration ranged from 5.6 to 528.4 ng g−1 d.w., demonstrating low to moderate pollution. The main identified PAH sources were vehicular and biomass emission, petroleum product spills, and coal combustion. A particularly high naphthalene concentration posing adverse biological effects was detected in the Nemunas River Delta region. Occasional adverse biological effects related to acenaphthene and dibenzo(a)anthracene might be observed in several Curonian Lagoon locations. The data obtained could serve for the improvement of the current regional environmental monitoring program: it reveals the need to take into account different sedimentary environments while choosing sampling locations. In addition to that, more PAHs could be included to the hazardous substance list.

Keywords

Polycyclic aromatic hydrocarbons Sediments Curonian Lagoon Nemunas River Delta Transitional water PAH sources 

Notes

Funding

This research was supported by the Open Access to research infrastructure of the Nature Research Center under Lithuanian open access network initiative.

References

  1. Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123.  https://doi.org/10.1016/j.ejpe.2015.03.011.CrossRefGoogle Scholar
  2. Achten, C., & Hofmann, T. (2009). Native polycyclic aromatic hydrocarbons (PAH) in coals – a hardly recognized source of environmental contamination. Science of the Total Environment, 407(8), 2461–2473.  https://doi.org/10.1016/j.scitotenv.2008.12.008.CrossRefGoogle Scholar
  3. Acquavita, A., Falomo, J., Predonzani, S., Tamberlich, F., Bettoso, N., & Mattassi, G. (2014). The PAH level, distribution and composition in surface sediments from a Mediterranean lagoon: the Marano and Grado Lagoon (Northern Adriatic Sea, Italy). Marine Pollution Bulletin, 81(1), 234–241.  https://doi.org/10.1016/j.marpolbul.2014.01.041.CrossRefGoogle Scholar
  4. Afshar-Mohajer, N., Wilson, C., Wu, C.-Y., & Stormer, J. E. (2016). Source apportionment of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Palm Beach County, Florida. Journal of the Air & Waste Management Association, 66(4), 377–386.  https://doi.org/10.1080/10962247.2016.1138902.CrossRefGoogle Scholar
  5. Agarwal, T., Khillare, P. S., Shridhar, V., & Ray, S. (2009). Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. Journal of Hazardous Materials, 163(2), 1033–1039.  https://doi.org/10.1016/j.jhazmat.2008.07.058.CrossRefGoogle Scholar
  6. Alam, M. S., Delgado-Saborit, J. M., Stark, C., & Harrison, R. M. (2013). Using atmospheric measurements of PAH and quinone compounds at roadside and urban background sites to assess sources and reactivity. Atmospheric Environment, 77, 24–35.  https://doi.org/10.1016/j.atmosenv.2013.04.068.CrossRefGoogle Scholar
  7. Aleksandrov, S. V. (2010). Biological production and eutrophication of Baltic Sea estuarine ecosystems: the Curonian and Vistula Lagoons. Marine Pollution Bulletin, 61(4), 205–210.  https://doi.org/10.1016/j.marpolbul.2010.02.015.CrossRefGoogle Scholar
  8. Annicchiarico, C., Buonocore, M., Cardellicchio, N., Di Leo, A., Giandomenico, S., & Spada, L. (2011). PCBs, PAHs and metal contamination and quality index in marine sediments of the Taranto Gulf. Chemistry and Ecology, 27(sup1), 21–32.  https://doi.org/10.1080/02757540.2010.536156.CrossRefGoogle Scholar
  9. Barakat, A. O., Mostafa, A., Wade, T. L., Sweet, S. T., & El Sayed, N. B. (2011). Distribution and characteristics of PAHs in sediments from the Mediterranean coastal environment of Egypt. Marine Pollution Bulletin, 62(9), 1969–1978.  https://doi.org/10.1016/j.marpolbul.2011.06.024.CrossRefGoogle Scholar
  10. Baran, S., Oleszczuk, P., Lesiuk, A., & Baranowska, E. (2002). Trace metals and polycyclic aromatic hydrocarbons in surface sediment samples from the Narew River (Poland). Polish Journal of Environmental Studies, 11(4), 299–305.Google Scholar
  11. Barhoumi, B., LeMenach, K., Devier, M.-H., Ameur, W. B., Etcheber, H., Budzinski, H., Cachot, J., & Driss, M. R. (2014). Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the Bizerte Lagoon, Tunisia: levels, sources, and toxicological significance. Environmental Monitoring and Assessment, 186(5), 2653–2669.  https://doi.org/10.1007/s10661-013-3569-5.CrossRefGoogle Scholar
  12. Baumard, P., Budzinski, H., & Garrigues, P. (1998). Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea. Environmental Toxicology and Chemistry, 17, 765–776.CrossRefGoogle Scholar
  13. Bergqvist, P.-A., Jegorova, I., Kaunelienė, V., & Žaliauskienė, A. (2007). Dissolved organochlorine and PAH pollution profiles in Lithuanian and Swedish surface waters. Bulletin of Environmental Contamination and Toxicology, 79(2), 147–152.  https://doi.org/10.1007/s00128-007-9095-9.CrossRefGoogle Scholar
  14. Bignal, K. L., Langridge, S., & Zhou, J. L. (2008). Release of polycyclic aromatic hydrocarbons, carbon monoxide and particulate matter from biomass combustion in a wood-fired boiler under varying boiler conditions. Atmospheric Environment, 42(39), 8863–8871.  https://doi.org/10.1016/j.atmosenv.2008.09.013.CrossRefGoogle Scholar
  15. Blazchishin, A. I. (1984). Main stages of the Baltic Sea history. In A. P. Lisitzin (Ed.), History of geology and geochemistry of the Baltic Sea (pp. 98–105). Moscow: Nauka.Google Scholar
  16. Budzinski, H., Jones, I., Bellocq, J., Piérard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58(1), 85–97.  https://doi.org/10.1016/S0304-4203(97)00028-5.CrossRefGoogle Scholar
  17. Chen, C.-W., & Chen, C.-F. (2011). Distribution, origin, and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan. Marine Pollution Bulletin, 63(5), 417–423.  https://doi.org/10.1016/j.marpolbul.2011.04.047.
  18. Chen, C.-F., Chen, C.-W., Dong, C.-D., & Kao, C.-M. (2013). Assessment of toxicity of polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbor, Taiwan. Science of the Total Environment, 463-464, 1174–1181.  https://doi.org/10.1016/j.scitotenv.2012.06.101.CrossRefGoogle Scholar
  19. Colom-Díaz, J. M., Alzueta, M. U., Fernandes, U., & Costa, M. (2017). Emissions of polycyclic aromatic hydrocarbons during biomass combustion in a drop tube furnace. Fuel, 207, 790–800.  https://doi.org/10.1016/j.fuel.2017.06.084.CrossRefGoogle Scholar
  20. Dailidienė, I., & Davulienė, L. (2008). Salinity trend and variation in the Baltic Sea near the Lithuanian coast and in the Curonian Lagoon in 1984–2005. Journal of Marine Systems, 74, S20–S29.  https://doi.org/10.1016/j.jmarsys.2008.01.014.CrossRefGoogle Scholar
  21. Enell, A., Lundstedt, S., Arp, H. P. H., Josefsson, S., Cornelissen, G., Wik, O., & Berggren Kleja, D. (2016). Combining leaching and passive sampling to measure the mobility and distribution between porewater, DOC, and colloids of native oxy-PAHs, N-PACs, and PAHs in historically contaminated soil. Environmental Science & Technology, 50(21), 11797–11805.  https://doi.org/10.1021/acs.est.6b02774.CrossRefGoogle Scholar
  22. Folk, R. L. (1974). Petrology of sedimentary rocks. Austin: Hemphill Publishing Co..Google Scholar
  23. Friedman, C. L., & Selin, N. E. (2012). Long-range atmospheric transport of polycyclic aromatic hydrocarbons: a global 3-D model analysis including evaluation of Arctic sources. Environmental Science & Technology, 46(17), 9501–9510.  https://doi.org/10.1021/es301904d.CrossRefGoogle Scholar
  24. Galkus, A. (2004). Peculiarities of sedimentary enviroment of most polluted bottom sediments in the Lithunian waters of Curonian Lagoon. In The Geographic Yearbook (Vol. 37, pp. 84–94). Vilnius.Google Scholar
  25. Galkus, A., & Jokšas, K. (1997). Sedimentary material in the transitional aquasystem. Vilnius: Institute of Geography.Google Scholar
  26. Gasiūnaitė, Z. R., Daunys, D., Olenin, S., & Razinkovas, A. (2008). The Curonian Lagoon. In U. Schiewer (Ed.), Ecology of Baltic coastal waters (pp. 197–215). Berlin: Springer Berlin Heidelberg.CrossRefGoogle Scholar
  27. Gonzalez, J. J., Vinas, L., Franco, M. A., Fumega, J., Soriano, J. A., Grueiro, G., et al. (2006). Spatial and temporal distribution of dissolved/dispersed aromatic hydrocarbons in seawater in the area affected by the Prestige oil spill. Marine Pollution Bulletin, 53(5–7), 250–259.  https://doi.org/10.1016/j.marpolbul.2005.09.039.CrossRefGoogle Scholar
  28. Gu, Y.-G., Lin, Q., Lu, T.-T., Ke, C.-L., Sun, R.-X., & Du, F.-Y. (2013). Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in surface sediments from Nan’ao Island, a representative mariculture base in South China. Marine Pollution Bulletin, 75(1), 310–316.  https://doi.org/10.1016/j.marpolbul.2013.07.039.CrossRefGoogle Scholar
  29. Harris, K. A., Yunker, M. B., Dangerfield, N., & Ross, P. S. (2011). Sediment-associated aliphatic and aromatic hydrocarbons in coastal British Columbia, Canada: concentrations, composition, and associated risks to protected sea otters. Environmental Pollution, 159(10), 2665–2674.  https://doi.org/10.1016/j.envpol.2011.05.033.CrossRefGoogle Scholar
  30. Iqbal, J., Overton, E. B., & Gisclair, D. (2008). Polycyclic aromatic hydrocarbons in Louisiana Rivers and coastal environments: source fingerprinting and forensic analysis. Environmental Forensics, 9(1), 63–74.  https://doi.org/10.1080/15275920801888301.CrossRefGoogle Scholar
  31. Jakimavičius, D., Kriaučiūnienė, J., & Šarauskienė, D. (2018). Impact of climate change on the Curonian Lagoon water balance components, salinity and water temperature in the 21st century. Oceanologia, 60, 378–389.  https://doi.org/10.1016/j.oceano.2018.02.003.CrossRefGoogle Scholar
  32. Jarašius, L. (2015). Possibilities of ecological restoration of raised bog plant communities in degraded parts and in a cutover peatland of Aukštumala raised bog. Vilnius: Vilnius University.Google Scholar
  33. Jokšas, K., Galkus, A., Stakėnienė, R. (2003). The only Lithuanian seaport and its environment. (pp. 223-252). Vilnius: Institute of Geology and Geography.Google Scholar
  34. Jokšas, K., Galkus, A., & Stakėnienė, R. (2016). Heavy metal contamination of the Curonian Lagoon bottom sediments (Lithuanian waters area). BALTICA, 29(2), 107–120.Google Scholar
  35. Jonker, M. T. O., & Muijs, B. (2010). Using solid phase micro extraction to determine salting-out (Setschenow) constants for hydrophobic organic chemicals. Chemosphere, 80(3), 223–227.  https://doi.org/10.1016/j.chemosphere.2010.04.041.CrossRefGoogle Scholar
  36. Kanzari, F., Syakti, A. D., Asia, L., Malleret, L., Mille, G., Jamoussi, B., Abderrabba, M., & Doumenq, P. (2012). Aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine, and organophosphorous pesticides in surface sediments from the Arc river and the Berre lagoon, France. Environmental Science and Pollution Research, 19(2), 559–576.  https://doi.org/10.1007/s11356-011-0582-5.CrossRefGoogle Scholar
  37. Katsoyiannis, A., & Breivik, K. (2014). Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool. Environmental Pollution, 184, 488–494.  https://doi.org/10.1016/j.envpol.2013.09.028.CrossRefGoogle Scholar
  38. Keith, L., & Telliard, W. (1979). ES&T special report: priority pollutants: I-a perspective view. Environmental Science & Technology, 13(4), 416–423.  https://doi.org/10.1021/es60152a601.CrossRefGoogle Scholar
  39. Lacorte, S., Raldúa, D., Martínez, E., Navarro, A., Diez, S., Bayona, J. M., & Barceló, D. (2006). Pilot survey of a broad range of priority pollutants in sediment and fish from the Ebro river basin (NE Spain). Environmental Pollution, 140(3), 471–482.  https://doi.org/10.1016/j.envpol.2005.08.008.CrossRefGoogle Scholar
  40. Larsen, R. K., 3rd, & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environmental Science & Technology, 37(9), 1873–1881.CrossRefGoogle Scholar
  41. Legorburu, I., Rodríguez, J. G., Valencia, V., Solaun, O., Borja, Á., Millán, E., Galparsoro, I., & Larreta, J. (2014). Sources and spatial distribution of polycyclic aromatic hydrocarbons in coastal sediments of the Basque Country (Bay of Biscay). Chemistry and Ecology, 30(8), 701–718.  https://doi.org/10.1080/02757540.2014.894990.CrossRefGoogle Scholar
  42. Leong, L. S., & Tanner, P. A. (1999). Comparison of methods for determination of organic carbon in marine sediment. Marine Pollution Bulletin, 38(10), 875–879.  https://doi.org/10.1016/S0025-326X(99)00013-2.CrossRefGoogle Scholar
  43. Li, J., Dong, H., Zhang, D., Han, B., Zhu, C., Liu, S., Liu, X., Ma, Q., & Li, X. (2015). Sources and ecological risk assessment of PAHs in surface sediments from Bohai Sea and northern part of the Yellow Sea, China. Marine Pollution Bulletin, 96(1–2), 485–490.  https://doi.org/10.1016/j.marpolbul.2015.05.002.CrossRefGoogle Scholar
  44. Lin, L., Dong, L., Meng, X., Li, Q., Huang, Z., Li, C., Li, R., Yang, W., & Crittenden, J. (2018). Distribution and sources of polycyclic aromatic hydrocarbons and phthalic acid esters in water and surface sediment from the Three Gorges Reservoir. Journal of Environmental Sciences, 69, 271–280.  https://doi.org/10.1016/j.jes.2017.11.004.CrossRefGoogle Scholar
  45. Liu, Y., Chen, L., Huang, Q.-H., Li, W.-Y., Tang, Y.-J., & Zhao, J.-F. (2009). Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River, Shanghai, China. Science of the Total Environment, 407(8), 2931–2938.  https://doi.org/10.1016/j.scitotenv.2008.12.046.CrossRefGoogle Scholar
  46. Liu, Y.-E., Huang, L.-Q., Luo, X.-J., Tan, X.-X., Huang, C.-C., Corella, P. Z., et al. (2018). Determination of organophosphorus flame retardants in fish by freezing-lipid precipitation, solid-phase extraction and gas chromatography-mass spectrometry. Journal of Chromatography A, 1532, 68–73.  https://doi.org/10.1016/j.chroma.2017.12.001.CrossRefGoogle Scholar
  47. Lubecki, L., & Kowalewska, G. (2012). Indices of PAH origin—a case study of the Gulf of Gdańsk (SE Baltic) sediments. Polycyclic Aromatic Compounds, 32(3), 335–363.  https://doi.org/10.1080/10406638.2011.640734.CrossRefGoogle Scholar
  48. Macdonald, D. D., Carr, R. S., Calder, F. D., Long, E. R., & Ingersoll, C. G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5(4), 253–278.  https://doi.org/10.1007/bf00118995.CrossRefGoogle Scholar
  49. Macias-Zamora, J. V., Mendoza-Vega, E., & Villaescusa-Celaya, J. A. (2002). PAHs composition of surface marine sediments: a comparison to potential local sources in Todos Santos Bay, B.C., Mexico. Chemosphere, 46(3), 459–468.CrossRefGoogle Scholar
  50. Mai, B.-X., Fu, J.-M., Sheng, G.-Y., Kang, Y.-H., Lin, Z., Zhang, G., Min, Y. S., & Zeng, E. Y. (2002). Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environmental Pollution, 117(3), 457–474.  https://doi.org/10.1016/S0269-7491(01)00193-2.CrossRefGoogle Scholar
  51. Martinez, E., Gros, M., Lacorte, S., & Barceló, D. (2004). Simplified procedures for the analysis of polycyclic aromatic hydrocarbons in water, sediments and mussels. Journal of Chromatography A, 1047(2), 181–188.  https://doi.org/10.1016/j.chroma.2004.07.003.CrossRefGoogle Scholar
  52. Mažeika, J. (2006). Use of lead-210 and carbon-14 in investigations of peat accumulation in Aukštumala raised bog, western Lithuania. BALTICA, 19(1), 30–37.Google Scholar
  53. Newton, A., Icely, J., Cristina, S., Brito, A., Cardoso, A. C., Colijn, F., Riva, S. D., Gertz, F., Hansen, J. W., Holmer, M., Ivanova, K., Leppäkoski, E., Canu, D. M., Mocenni, C., Mudge, S., Murray, N., Pejrup, M., Razinkovas, A., Reizopoulou, S., Pérez-Ruzafa, A., Schernewski, G., Schubert, H., Carr, L., Solidoro, C., PierluigiViaroli, & Zaldívar, J. M. (2014). An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuarine, Coastal and Shelf Science, 140, 95–122.  https://doi.org/10.1016/j.ecss.2013.05.023.CrossRefGoogle Scholar
  54. Nisbet, C., & LaGoy, P. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300.CrossRefGoogle Scholar
  55. Niu, L., Cai, H., Van Gelder, P. H. A. J. M., Luo, P., Liu, F., & Yang, Q. (2018). Dynamics of polycyclic aromatic hydrocarbons (PAHs) in water column of Pearl River estuary (China): seasonal pattern, environmental fate and source implication. Applied Geochemistry, 90, 39–49.  https://doi.org/10.1016/j.apgeochem.2017.12.014.CrossRefGoogle Scholar
  56. Oliveira, C., Martins, N., Tavares, J., Pio, C., Cerqueira, M., Matos, M., Silva, H., Oliveira, C., & Camões, F. (2011). Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Chemosphere, 83(11), 1588–1596.  https://doi.org/10.1016/j.chemosphere.2011.01.011.CrossRefGoogle Scholar
  57. Patrolecco, L., Ademollo, N., Capri, S., Pagnotta, R., & Polesello, S. (2010). Occurrence of priority hazardous PAHs in water, suspended particulate matter, sediment and common eels (Anguilla anguilla) in the urban stretch of the River Tiber (Italy). Chemosphere, 81(11), 1386–1392.  https://doi.org/10.1016/j.chemosphere.2010.09.027.CrossRefGoogle Scholar
  58. Pies, C., Yang, Y., & Hofmann, T. (2007). Distribution of polycyclic aromatic hydrocarbons (PAHs) in floodplain soils of the Mosel and Saar River. Journal of Soils and Sediments, 7(4), 216–222.  https://doi.org/10.1065/jss2007.06.233.CrossRefGoogle Scholar
  59. Pinto, M. I., Burrows, H. D., Sontag, G., Vale, C., & Noronha, J. P. (2016). Priority pesticides in sediments of European coastal lagoons: a review. Marine Pollution Bulletin, 112(1), 6–16.  https://doi.org/10.1016/j.marpolbul.2016.06.101.CrossRefGoogle Scholar
  60. Pohl, A., Kostecki, M., Jureczko, I., Czaplicka, M., & Łozowski, B. (2018). Polycyclic aromatic hydrocarbons in water and bottom sediments of a shallow, lowland dammed reservoir (on the example of the reservoir Blachownia, South Poland). Archives of Environmental Protection, 44(1), 10–23.Google Scholar
  61. Pustelnikovas, O. (1998). Geochemistry of sediments of the Curonian Lagoon (Baltic Sea) (pp.1-234). Vilnius: Institute of Geography.Google Scholar
  62. Pustelnikovas, O. (2008). On the Eastern Baltic environment changes: a case study of the Curonian Lagoon area. Geologija, 50(2 (62)), 80–87.CrossRefGoogle Scholar
  63. Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921.  https://doi.org/10.1016/j.atmosenv.2007.12.010.CrossRefGoogle Scholar
  64. Remeikaitė-Nikienė, N., Lujanienė, G., Malejevas, V., Barisevičiūtė, R., Žilius, M., Garnaga-Budrė, G., & Stankevičius, A. (2016). Distribution and sources of organic matter in sediments of the South-Eastern Baltic Sea. Journal of Marine Systems, 157, 75–81.  https://doi.org/10.1016/j.jmarsys.2015.12.011.CrossRefGoogle Scholar
  65. Rengarajan, T., Rajendran, P., Nandakumar, N., Lokeshkumar, B., Rajendran, P., & Nishigaki, I. (2015). Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacific Journal of Tropical Biomedicine, 5(3), 182–189.  https://doi.org/10.1016/S2221-1691(15)30003-4.CrossRefGoogle Scholar
  66. Rimayi, C., Chimuka, L., Odusanya, D., de Boer, J., & Weiss, J. M. (2017). Source characterisation and distribution of selected PCBs, PAHs and alkyl PAHs in sediments from the Klip and Jukskei Rivers, South Africa. Environmental Monitoring and Assessment, 189(7), 327.  https://doi.org/10.1007/s10661-017-6043-y.CrossRefGoogle Scholar
  67. Rocha, M. J., Dores-Sousa, J. L., Cruzeiro, C., & Rocha, E. (2017). PAHs in water and surface sediments from Douro River estuary and Porto Atlantic coast (Portugal)-impacts on human health. Environmental Monitoring and Assessment, 189(8), 425.  https://doi.org/10.1007/s10661-017-6137-6.CrossRefGoogle Scholar
  68. Shi, Z., Tao, S., Pan, B., Fan, W., He, X. C., Zuo, Q., Wu, S. P., Li, B. G., Cao, J., Liu, W. X., Xu, F. L., Wang, X. J., Shen, W. R., & Wong, P. K. (2005). Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environmental Pollution, 134(1), 97–111.CrossRefGoogle Scholar
  69. Specchiulli, A., Focardi, S., Renzi, M., Scirocco, T., Cilenti, L., Breber, P., & Bastianoni, S. (2008). Environmental heterogeneity patterns and assessment of trophic levels in two Mediterranean lagoons: Orbetello and Varano, Italy. Science of the Total Environment, 402(2–3), 285–298.  https://doi.org/10.1016/j.scitotenv.2008.04.052.CrossRefGoogle Scholar
  70. Sprovieri, M., Feo, M. L., Prevedello, L., Manta, D. S., Sammartino, S., Tamburrino, S., & Marsella, E. (2007). Heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in surface sediments of the Naples harbour (southern Italy). Chemosphere, 67(5), 998–1009.  https://doi.org/10.1016/j.chemosphere.2006.10.055.CrossRefGoogle Scholar
  71. Stakėnienė, R., Jokšas, K., Galkus, A., & Raudonytė-Svirbutavičienė, E. (2016). Aliphatic and polycyclic aromatic hydrocarbons in the bottom sediments from Klaipėda Harbour, Lithuania (Baltic Sea). Chemistry and Ecology, 32(4), 357–377.  https://doi.org/10.1080/02757540.2016.1142977.CrossRefGoogle Scholar
  72. Staniszewska, M., Boniecka, H., & Gajecka, A. (2013). Organochlorine, organophosphoric and organotin contaminants, aromatic and aliphatic hydrocarbons and heavy metals in sediments of the ports from the polish part of the Vistula Lagoon (Baltic Sea). Soil and Sediment Contamination: An International Journal, 22(2), 151–173.  https://doi.org/10.1080/15320383.2013.722137.CrossRefGoogle Scholar
  73. Suzdalev, S. (2015). Hazardous substances distribution and geochemical anomalies in the surface sediments of a heavily modified water body Klaipėda University, Klaipėda.Google Scholar
  74. Tavares, M., Pinto, J. P., Souza, A. L., Scarmínio, I. S., & Cristina Solci, M. (2004). Emission of polycyclic aromatic hydrocarbons from diesel engine in a bus station, Londrina, Brazil. Atmospheric Environment, 38(30), 5039–5044.  https://doi.org/10.1016/j.atmosenv.2004.06.020.CrossRefGoogle Scholar
  75. Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.  https://doi.org/10.1016/j.envpol.2011.10.025.CrossRefGoogle Scholar
  76. Tsibart, A., Gennadiev, A., Koshovskii, T., & Watts, A. (2014). Polycyclic aromatic hydrocarbons in post-fire soils of drained peatlands in western Meshchera (Moscow region, Russia). Solid Earth, 5(2), 1305–1317.CrossRefGoogle Scholar
  77. Turetsky, M. R., Benscoter, B., Page, S., Rein, G., van der Werf, G. R., & Watts, A. (2014). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8, 11–14.  https://doi.org/10.1038/ngeo2325.CrossRefGoogle Scholar
  78. US EPA. (1993). Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons, EPA/600/R-93/089. Washington, DC: Office of Research and Development, US Environment Protection Agency.Google Scholar
  79. Wang, Z., Fingas, M., & Page, D. S. (1999). Oil spill identification. Journal of Chromatography A, 843(1), 369–411.  https://doi.org/10.1016/S0021-9673(99)00120-X.CrossRefGoogle Scholar
  80. Wang, M., Wang, C., Hu, X., Zhang, H., He, S., & Lv, S. (2015). Distributions and sources of petroleum, aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Bohai Bay and its adjacent river, China. Marine Pollution Bulletin, 90(1–2), 88–94.  https://doi.org/10.1016/j.marpolbul.2014.11.017.CrossRefGoogle Scholar
  81. Yamamoto, M., & Polyak, L. (2009). Changes in terrestrial organic matter input to the Mendeleev Ridge, western Arctic Ocean, during the Late Quaternary. Global and Planetary Change, 68(1), 30–37.  https://doi.org/10.1016/j.gloplacha.2009.03.012.CrossRefGoogle Scholar
  82. Yu, W., Liu, R., Xu, F., Men, C., & Shen, Z. (2016). Identifications and seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) in the Yangtze River Estuary, China. Marine Pollution Bulletin, 104(1), 347–354.  https://doi.org/10.1016/j.marpolbul.2016.01.036.CrossRefGoogle Scholar
  83. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515.  https://doi.org/10.1016/S0146-6380(02)00002-5.CrossRefGoogle Scholar
  84. Zareckas, S., Galkus, A., & Jokšas, K. (1994). Problematic aspects of Nemunas River load monitoring. In R. Thurston (Ed.), Environmental studies in the Nemunas River basin, Lithuania Bozeman. Montana: Montana State University.Google Scholar
  85. Žaromskis, R. (1996). Oceans, seas, estuaries (in Lithuanian). Vilnius: Debesija.Google Scholar
  86. Zettler, M. L., & Daunys, D. (2007). Long-term macrozoobenthos changes in a shallow boreal lagoon: comparison of a recent biodiversity inventory with historical data. Limnologica - Ecology and Management of Inland Waters, 37(2), 170–185.  https://doi.org/10.1016/j.limno.2006.12.004.CrossRefGoogle Scholar
  87. Zhao, M., Wang, W., Liu, Y., Dong, L., Jiao, L., Hu, L., & Fan, D. (2016). Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments from the Bering Sea and western Arctic Ocean. Marine Pollution Bulletin, 104(1–2), 379–385.  https://doi.org/10.1016/j.marpolbul.2016.01.016.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Geology and Geography, SRI Nature Research CentreVilniusLithuania
  2. 2.Faculty of Chemistry and GeosciencesVilnius UniversityVilniusLithuania

Personalised recommendations