Advertisement

Estimating long-term LULC changes in an agriculture-dominated basin using CORONA (1970) and LISS IV (2013–14) satellite images: a case study of Ramganga River, India

  • Suresh Kr Gurjar
  • Vinod TareEmail author
Article
  • 40 Downloads

Abstract

The basin of Ramganga River, a major tributary of Ganga, has seen rapid industrialization, urbanization, and agricultural growth in modern times, especially during and after the 1970s, with consequent changes in Land Use and Land Cover (LULC) of the basin. Object-based classification of seldom-used CORONA images (for 1970) for historical LULC scenario and LISS IV (Resourcesat-2) images (for 2013–14) for the present scenario of the basin was performed with high overall accuracies of 93% and 87% and Kappa coefficients of 0.89 and 0.82 respectively. Object-based classification using the eCognition software tool combined with manual classification of the images revealed significant decrease in total forest cover (~ 485 km2) and riverbed (~ 498 km2) LULC classes along with correspondingly increased agriculture (~ 898 km2) and built-up (~ 313 km2) classes in the basin. Further, though Ramganga reservoir (spread over ~ 70 km2), operated since in 1974, has increased the water area by ~ 1295% in Afzalgarh sub-basin of the Ramganga Basin, the overall area of water class decreased by 1.64% in the basin, probably due to loss of ponds in agricultural lands. An upward shift of about 42 km in the confluence point of Ramganga and Gangan Rivers was also observed, which may be attributed to the course shift of Ramganga in a south-west direction.

Keywords

CORONA LISS IV Channel-shift Object-based classification Ramganga LULC 

Notes

Supplementary material

10661_2019_7356_MOESM1_ESM.docx (807 kb)
ESM 1 (DOCX 807 kb)

References

  1. Alqurashi, A. F., & Kumar, L. (2013). Investigating the use of remote sensing and GIS techniques to detect land use and land cover change: a review. Advances in Remote Sensing, 02(02), 193–204.  https://doi.org/10.4236/ars.2013.22022.CrossRefGoogle Scholar
  2. Baatz, M., & Schäpe, A. (2000). Multiresolution segmentation - an optimization approach for high quality multi-scale image segmentation. In Angewandte Geographische Informationsverarbeitung XII. Beiträge zum AGIT-symposium (pp. 12–23).Google Scholar
  3. Bapna, R. (2008). Object based classification of LISS-IV Sensor Imagery. Kanpur: Indian Institute of Technology (July).Google Scholar
  4. Belgiu, M., & Drǎguţ, L. (2014). Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 96, 67–75.  https://doi.org/10.1016/J.ISPRSJPRS.2014.07.002.CrossRefGoogle Scholar
  5. Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3–4), 239–258.  https://doi.org/10.1016/j.isprsjprs.2003.10.002.CrossRefGoogle Scholar
  6. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16.  https://doi.org/10.1016/J.ISPRSJPRS.2009.06.004.CrossRefGoogle Scholar
  7. Chakraborty, A., Sachdeva, K., & Joshi, P. K. (2016). Mapping long-term land use and land cover change in the central Himalayan region using a tree-based ensemble classification approach. Applied Geography, 74, 136–150.  https://doi.org/10.1016/J.APGEOG.2016.07.008.CrossRefGoogle Scholar
  8. Cheng, G., & Han, J. (2016). A survey on object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing. Elsevier.  https://doi.org/10.1016/j.isprsjprs.2016.03.014
  9. Chi, G., & Ho, H. C. (2018). Population stress: a spatiotemporal analysis of population change and land development at the county level in the contiguous United States, 2001–2011. Land Use Policy, 70, 128–137.  https://doi.org/10.1016/J.LANDUSEPOL.2017.10.008.CrossRefGoogle Scholar
  10. Dashora, A., Lohani, B., & Malik, J. N. (2007). A repository of earth resource information - CORONA satellite programme. Current Science, 92(7), 926–932.  https://doi.org/10.2307/24097673.CrossRefGoogle Scholar
  11. DeWitt, J. D., Chirico, P. G., Bergstresser, S. E., & Warner, T. A. (2017). Multi-scale 46-year remote sensing change detection of diamond mining and land cover in a conflict and post-conflict setting. Remote Sensing Applications: Society and Environment, 8, 126–139.  https://doi.org/10.1016/J.RSASE.2017.08.002.CrossRefGoogle Scholar
  12. Dupuy, S., Barbe, E., & Balestrat, M. (2012). An object-based image analysis method for monitoring land conversion by artificial sprawl use of RapidEye and IRS data. Remote Sensing, 4(2), 404–423.  https://doi.org/10.3390/rs4020404.CrossRefGoogle Scholar
  13. Feld, C. K., Fernandes, M. R., Ferreira, M. T., Hering, D., Ormerod, S. J., Venohr, M., & Gutiérrez-Cánovas, C. (2018). Evaluating riparian solutions to multiple stressor problems in river ecosystems — a conceptual study. Water Research. Pergamon.  https://doi.org/10.1016/j.watres.2018.04.014.
  14. Gao, Y., Mas, J. F., Kerle, N., & Pacheco, J. A. N. (2011). Optimal region growing segmentation and its effect on classification accuracy. International Journal of Remote Sensing, 32(13), 3747–3763.  https://doi.org/10.1080/01431161003777189.CrossRefGoogle Scholar
  15. Gashaw, T., Tulu, T., Argaw, M., & Worqlul, A. W. (2018). Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Science of the Total Environment, 619–620, 1394–1408.  https://doi.org/10.1016/j.scitotenv.2017.11.191.CrossRefGoogle Scholar
  16. Hamandawana, H., Eckardt, F., & Ringrose, S. (2007). Proposed methodology for georeferencing and mosaicking CORONA photographs. International Journal of Remote Sensing, 28(1), 5–22.  https://doi.org/10.1080/01431160500104400.CrossRefGoogle Scholar
  17. Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610–621.  https://doi.org/10.1109/TSMC.1973.4309314.CrossRefGoogle Scholar
  18. Huang, L., & Ni, L. (2008). Object-oriented classification of high resolution satellite image for better accuracy. International Symposium on Spatial Accuracy Assessmet in Natural Resources and Environmental Sciences, 211–218.Google Scholar
  19. Jixian, Z. (2004). An object-oriented classification method on high resolution satellite data. Data Processing, 347–350.Google Scholar
  20. Joshi, P. K., Kumar, M., Paliwal, A., Midha, N., & Dash, P. P. (2009). Assessing impact of industrialization in terms of LULC in a dry tropical region (Chhattisgarh), India using remote sensing data and GIS over a period of 30 years. Environmental Monitoring and Assessment, 149(1–4), 371–376.  https://doi.org/10.1007/s10661-008-0211-z.CrossRefGoogle Scholar
  21. Kar, R., Obi Reddy, G. P., Kumar, N., & Singh, S. K. (2018). Monitoring spatio-temporal dynamics of urban and peri-urban landscape using remote sensing and GIS – a case study from Central India. The Egyptian Journal of Remote Sensing and Space Science., 21, 401–411.  https://doi.org/10.1016/j.ejrs.2017.12.006.CrossRefGoogle Scholar
  22. Liu, Y., Zhang, L., Wei, X., & Xie, P. (2016). Integrating the spatial proximity effect into the assessment of changes in ecosystem services for biodiversity conservation. Ecological Indicators, 70, 382–392.  https://doi.org/10.1016/j.ecolind.2016.06.019.CrossRefGoogle Scholar
  23. Maurya, S. P., & Agnihotri, A. K. (2016). Evaluation of course change detection of Ramganga river using remote sensing and GIS, India. Weather and Climate Extremes, 13, 68–72.  https://doi.org/10.1016/j.wace.2016.08.001.CrossRefGoogle Scholar
  24. Meneguzzo, D. M., Liknes, G. C., & Nelson, M. D. (2013). Mapping trees outside forests using high-resolution aerial imagery: a comparison of pixel- and object-based classification approaches. Environmental Monitoring and Assessment, 185(8), 6261–6275.  https://doi.org/10.1007/s10661-012-3022-1.CrossRefGoogle Scholar
  25. Misra, A. K. (2011). Impact of urbanization on the hydrology of Ganga Basin (India). Water Resources Management, 25(2), 705–719.  https://doi.org/10.1007/s11269-010-9722-9.CrossRefGoogle Scholar
  26. Mohan, M., & Kandya, A. (2015). Impact of urbanization and land-use/land-cover change on diurnal temperature range: a case study of tropical urban airshed of India using remote sensing data. Science of the Total Environment, 506–507, 453–465.  https://doi.org/10.1016/J.SCITOTENV.2014.11.006.CrossRefGoogle Scholar
  27. Pandya, M. R., Pathak, V. N., Shah, D. B., & Singh, R. P. (2014). Retrieval of surface reflectance using SACRS2: a scheme for atmospheric correction of Resourcesat-2 AWiFS data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(8), 865–868.  https://doi.org/10.5194/isprsarchives-XL-8-865-2014.CrossRefGoogle Scholar
  28. Pandya, M. R., Pathak, V. N., Shah, D. B., Trivedi, H. J., Chipade, R. A., Singh, R. P., & Kirankumar, A. S. (2015). Development of a scheme for atmospheric correction of Resourcesat-2 AWiFS data. International Journal of Applied Earth Observation and Geoinformation, 40, 65–73.  https://doi.org/10.1016/j.jag.2015.04.004.CrossRefGoogle Scholar
  29. Pathak, V. N., Pandya, M. R., Shah, D. B., Trivedi, H. J., & Patel, K. D. (2016). Retrieval of surface reflectance from Resourcesat-2 AWiFS, LISS-3, and LISS-4 data using SACRS2 scheme. SPIE Asia-Pacific Remote Sensing, 2016, New Delhi, India, 988020, 988020.  https://doi.org/10.1117/12.2223649.CrossRefGoogle Scholar
  30. Pimentel, D., Burgess, M., Pimentel, D., & Burgess, M. (2018). World human population problems. In Encyclopedia of the anthropocene (pp. 313–317). Elsevier.  https://doi.org/10.1016/B978-0-12-809665-9.09303-4.
  31. Saleem, A. (2017). Using CORONA and Landsat data for evaluating and mapping long-term LULC changes in Iraqi Kurdistan. Curtin University Retrieved from https://espace.curtin.edu.au/handle/20.500.11937/57108.
  32. Saleem, A., Corner, R., & Awange, J. (2018). On the possibility of using CORONA and Landsat data for evaluating and mapping long-term LULC: case study of Iraqi Kurdistan. Applied Geography, 90, 145–154.  https://doi.org/10.1016/j.apgeog.2017.12.007.CrossRefGoogle Scholar
  33. Sanhouse-Garcia, A. J., Bustos-Terrones, Y., Rangel-Peraza, J. G., Quevedo-Castro, A., & Pacheco, C. (2017). Multi-temporal analysis for land use and land cover changes in an agricultural region using open source tools. Remote Sensing Applications: Society and Environment, 8, 278–290.  https://doi.org/10.1016/J.RSASE.2016.11.002.CrossRefGoogle Scholar
  34. Sarkar, D. (2014). Assessment of human disturbance on the Ganga River system around Kanpur. India: Indian Institute of Technology Kanpur.Google Scholar
  35. Sharma, A., Badarinath, K., & Roy, P. (2008). Corrections for atmospheric and adjacency effects on high resolution sensor data—a case study using IRS-P6 LISS-IV data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B8), 497–502 http://www.isprs.org/proceedings/XXXVII/congress/8_pdf/3_WG-VIII-3/05.pdf. Accessed 16 Feb 2018.Google Scholar
  36. Shrivastava, S. (2015). Land cover analysis of Kshipra River basin using LISS IV and CORONA images: comparison of object based and pixel based classification. Indian Institute of Technology Kanpur, India.Google Scholar
  37. Song, D. X., Huang, C., Sexton, J. O., Channan, S., Feng, M., & Townshend, J. R. (2015). Use of landsat and corona data for mapping forest cover change from the mid-1960s to 2000s: Case studies from the eastern United States and Central Brazil. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 81–92.  https://doi.org/10.1016/j.isprsjprs.2014.09.005.CrossRefGoogle Scholar
  38. Stehman, S. V. (2009). Sampling designs for accuracy assessment of land cover. International Journal of Remote Sensing, 30(20), 5243–5272.  https://doi.org/10.1080/01431160903131000.CrossRefGoogle Scholar
  39. Sugg, Z. P., Finke, T., Goodrich, D. C., Moran, M. S., & Yool, S. R. (2014). Mapping impervious surfaces using object-oriented classification in a semiarid urban region. Photogrammetric Engineering & Remote Sensing, 80(4), 343–352.  https://doi.org/10.14358/PERS.80.4.343.CrossRefGoogle Scholar
  40. Tappan, G. G., Hadj, A., Wood, E. C., & Lietzow, R. W. (2000). Use of Argon, Corona, and Landsat imagery to assess 30 years of land resource changes in west-central Senegal. Photogrammetric Engineering & Remote Sensing, 66(6), 727–735.Google Scholar
  41. Tian, Y., Yin, K., Lu, D., Hua, L., Zhao, Q., & Wen, M. (2014). Examining land use and land cover spatiotemporal change and driving forces in Beijing from 1978 to 2010. Remote Sensing, 6(11), 10593–10611.  https://doi.org/10.3390/rs61110593.CrossRefGoogle Scholar
  42. Watanabe, N., Nakamura, S., Liu, B., & Wang, N. (2017). Utilization of structure from motion for processing CORONA satellite images: application to mapping and interpretation of archaeological features in Liangzhu Culture, China. Archaeological Research in Asia, 11, 38–50.  https://doi.org/10.1016/J.ARA.2017.06.001.CrossRefGoogle Scholar
  43. Yu, W., Zhou, W., Qian, Y., & Yan, J. (2016). A new approach for land cover classification and change analysis: integrating backdating and an object-based method. Remote Sensing of Environment, 177, 37–47.  https://doi.org/10.1016/J.RSE.2016.02.030.CrossRefGoogle Scholar
  44. Yuan, F. (2008). Land-cover change and environmental impact analysis in the Greater Mankato area of Minnesota using remote sensing and GIS modelling. International Journal of Remote Sensing, 29(4), 1169–1184.  https://doi.org/10.1080/01431160701294703.CrossRefGoogle Scholar
  45. Zhang, J., & Jia, L. (2014). A comparison of pixel-based and object-based land cover classification methods in an arid/semi-arid environment of Northwestern China. 3rd International Workshop on Earth Observation and Remote Sensing Applications, EORSA 2014 - Proceedings, 403–407.  https://doi.org/10.1109/EORSA.2014.6927922.
  46. Zhou, W., Wang, J., Qian, Y., Pickett, S. T. A., Li, W., & Han, L. (2018). The rapid but “invisible” changes in urban greenspace: a comparative study of nine Chinese cities. Science of the Total Environment, 627, 1572–1584.  https://doi.org/10.1016/j.scitotenv.2018.01.335.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations