Skip to main content

Advertisement

Log in

Life cycle assessment of rice production systems in different paddy field size levels in north of Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Life cycle assessment (LCA) had proven to be an appropriate assessment tool for analysis of agro-ecosystems by identifying, quantifying, and evaluating the resources consumed and released into the environment. In order to assess the relevant environmental impacts of rice agro-ecosystems due to a specific process, using LCA method, two factors concerned with resource utilization and contaminant emissions were calculated in north of Iran during 2016 and 2017. All the management practices/inputs were monitored and recorded with the help of local experts without interference in farmer’s practices. After preliminary evaluation, 100 paddy fields were selected in three planting systems (low input, conventional, and high input) which were predicted in two planting methods (semi-mechanized and traditional) in small, medium, and large farm size levels. Functional unit was considered as one ton paddy yield. The finding revealed that in both regions, all the impact categories and environmental pollutant were almost same and farmer’s management practices are close to each other. Also, climate change (CC) in Amol and Rasht regions was 277.21 and 275.79 kg CO2 eq., respectively. The most CC, global warming potential (GWP 100a), and cumulative energy demand (CED) in both regions were observed in high-input system for semi-mechanized method. Furthermore, the result for the impact categories of terrestrial acidification (TA), freshwater eutrophication (FE), marine eutrophication (ME), agricultural land occupation (ALO), water depletion (WD), metal depletion (MD), and fossil depletion (FD) was similar to the CC, GWP, and CED where the highest amounts in both regions statistically went to high-input system, traditional planting method, and small farms. Moreover, in both regions, high-input and conventional systems emitted higher heavy metals than low-input system. Furthermore, the most heavy metal emission in the air was achieved in small farm, and medium farm got the next rank. Additionally, the high consumption of chemical inputs, such as fossil fuels and fertilizers, in the high-input and conventional systems led to an increase of environmental pollutant in comparison with low-input systems. Therefore, to increase the sustainability of agro-ecosystems, as well as to reduce the environmental impacts of pollutant, reforming the pattern of chemical input consumption and reducing the use of non-renewable energy sources are essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bare, J. (2011). TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technologies & Environmental Policy, 13(5), 687–696. https://doi.org/10.1007/s10098-010-0338-9.

    Article  CAS  Google Scholar 

  • Bare, J. C., Norris, G. A., Pennington, D. W., & Mc Kone, T. (2003). TRACI: the tool for the reduction and assessment of chemical and other environmental impacts. Journal of Industrial Ecology, 6, 49–78. https://doi.org/10.1162/108819802766269539.

    Article  Google Scholar 

  • Biswas, W. K., Barton, L., & Carter, D. (2008). Global warming potential of wheat production in Western Australia: a life cycle assessment. Water & Environmental Journal, 22, 206–216. https://doi.org/10.1111/j.1747-6593.2008.00127.x.

    Article  CAS  Google Scholar 

  • Blengini, G. A., & Busto, M. (2009). The life cycle of rice. LCA of alternative agri-food chain management systems in Vercelli (Italy). Journal of Environmental Management, 90(3), 1512–1522. https://doi.org/10.1016/j.jenvman.2008.10.006.

    Article  Google Scholar 

  • Brentrup, F., Kusters, J., Lammel, J., Barraclough, P., & Kuhlmann, H. (2004). Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology: II. The application of N fertilizer use in winter wheat production systems. European Journal of Agronomy, 20(3), 265–279. https://doi.org/10.1016/S1161-0301(03)00039-X.

    Article  Google Scholar 

  • Charles, R., Jolliet, O., Gaillard, G., & Pellet, D. (2006). Environmental analysis of intensity level in wheat crop production using life cycle assessment. Agriculture, Ecosystems & Environment, 113(1/4), 216–225. https://doi.org/10.1016/j.agee.2005.09.014.

    Article  Google Scholar 

  • Chauhan, N. S., Mohapatra, P. K. J., & Pandey, K. P. (2006). Improving energy productivity in paddy production through bench marking and application of data envelopment analysis. Energy Conversation & Management, 47(9/10), 1063–1085. https://doi.org/10.1016/j.enconman.2005.07.004.

    Article  Google Scholar 

  • Cherubini, F. (2010). GHG balance of bioenergy systems overview of key steps in the production chain and methodological concerns. Renewable Energy, 35(7), 1565–1573. https://doi.org/10.1016/j.renene.2009.11.035.

    Article  CAS  Google Scholar 

  • Dalgaard, T., Halberg, N., & Porter, J. R. (2001). A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agriculture, Ecosystems & Environment, 87(1), 51–65. https://doi.org/10.1016/S0167-8809(00)00297-8.

    Article  Google Scholar 

  • Dastan, S., Ghareyazie, B., Mortazavi, E., Mohsenpour, M., & Abdollahi, S., (2017). The environmental life cycle assessment (LCA) of transgenic and non-transgenic rice cultivars. 2nd International and 10th National Biotechnology Congress of Islamic Republic of Iran. Aug. 29–31. Seed and Plant Improvement Institute, Karaj, Iran.

  • Dastan, S., Ghareyazie, B., Soltani, A., & Omidi, M., (2016). The life cycle assessment (LCA) of rice in conventional, intensive and conservation systems. 2nd International and 14th National Iranian Crop Science Congress. Aug. 30–Sep. 1. University of Guilan, Rasht, Iran.

  • Engstrom, R., Wadeskog, A., & Finnveden, G. (2007). Environmental assessment of Swedish agriculture. Ecological Economics, 60(3), 550–563. https://doi.org/10.1016/j.ecolecon.2005.12.013.

    Article  Google Scholar 

  • FAO, (2018). FAO rice market monitor (RMM). http://www.fao.org/economic/est/publications/rice-publications/rice-market-monitor-rmm/en/.

  • FAO, (2016) FAOSTAT—trade/crops and livestock products, available in http://faostat3.fao.org/browse/T/TP/E[15 April 2016].

  • Finkbeiner, M., Inaba, A., Tan, R. B. H., Christiansen, K., & Kluppel, H. J. (2006). The new international standards for life cycle assessment: ISO 14040 and ISO 14044. International Journal of Life Cycle Assessment, 11(2), 80–85. https://doi.org/10.1065/lca2006.02.002.

    Article  Google Scholar 

  • Goossens, Y., Geerared, A., Keulemans, W., Annaret, B., Mathijs, E., & De Tavernier, J. (2017). Life cycle assessment (LCA) for apple orchard production systems including low and high productive years in conventional, integrated and organic farms. Agricultural Systems, 153, 81–93. https://doi.org/10.1016/j.agsy.2017.01.007.

    Article  Google Scholar 

  • He, X., Qiao, Y., Liang, L., Knudsen, M. T., & Martin, F. (2018). Environmental life cycle assessment of long-term organic rice production in sub-tropical China. Journal of Cleaner Production, 176, 880–888. https://doi.org/10.1016/j.jclepro.2017.12.045.

    Article  CAS  Google Scholar 

  • Hokazono, S., & Hayashi, K. (2012). Variability in environmental impacts during conversion from conventional to organic farming: a comparison among three rice production system in Japan. Journal of Cleaner Production, 28, 101–112. https://doi.org/10.1016/j.jclepro.2011.12.005.

    Article  Google Scholar 

  • IPCC. (2013). Summary for policymakers. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Doschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, Eds. Cambridge University Press, pp. 3–29. doi:https://doi.org/10.1017/CBO9781107415324.004

  • Iqbal, M. D. T. (2008). Energy input and output for production of Boro rice in Bangladesh. Electronic Journal of Environment, Agriculture & Food Chemistry, 7(3), 2717–2722.

    Google Scholar 

  • Iriarte, A., Rieradevall, J., & Gabarrel, H. (2010). Life cycle assessment of sunflower and rapeseed as energy crops under Chilean condition. Journal of Cleaner Production, 18(4), 336–345. https://doi.org/10.1016/j.jclepro.2009.11.004.

    Article  CAS  Google Scholar 

  • ISO, (2006). 14040 International standard. Environmental management—life cycle assessment—principles and framework. International Organisation for Standardization, Geneva, Switzerland.

  • Kazemi, H., Kamkar, B., Lakzaei, S., Badsar, M., & Shahbyki, M. (2015). Energy flow analysis for rice production in different geographical regions of Iran. Energy, 84, 390–396. https://doi.org/10.1016/j.energy.2015.03.005.

    Article  Google Scholar 

  • Khan, S., Khan, M. A., & Latif, N. (2010). Energy requirement and economic analysis of wheat, rice and barley production in Australia. Soil & Environment, 29(1), 61–68.

    CAS  Google Scholar 

  • Khoshnevisan, B., Rajaeifar, M. A., Clark, S., Shamshirband, M. A., Bardul Anuar, N., Mohd Shuib, N. L., & Gani, A. (2014). Evaluation of traditional and consolidated rice farms in Guilan province, Iran, using life cycle assessment and fuzzy modeling. Science of the Total Environment, 481, 242–251. https://doi.org/10.1016/j.scitotenv.2014.02.052.

    Article  CAS  Google Scholar 

  • Koga, N. (2008). An energy balance under a conventional crop rotation system in northern Japan: perspectives on fuel ethanol production from sugar beet. Agriculture, Ecosystems & Environment, 125(1/4), 101–110. https://doi.org/10.1016/j.agee.2007.12.002.

    Article  Google Scholar 

  • Koga, N., & Tajima, R. (2011). Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan. Journal of Environmental Management, 92(3), 967–973. https://doi.org/10.1016/j.jenvman.2010.11.008.

    Article  CAS  Google Scholar 

  • Linquist, B. A., van Groenigen, K. J., Adviento-Borbe, M. A., Pittelkow, C. M., & van Kessel, C. (2012). An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology, 18(1), 194–209. https://doi.org/10.1111/j.1365-2486.2011.02502.x.

    Article  Google Scholar 

  • Ministry of Jihad-e-Agriculture of Iran, (2016) Annual agricultural statics. www.maj.ir

  • Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Dalgaard, T., Trydeman Knudsen, M., Nguyen, T. L. T., Borek, R., & Hermansen, J. E. (2015). Joint life cycle assessment and data envelopment analysis for the benchmarking of environmental impacts in rice paddy production. Journal of Cleaner Production, 106, 521–532. https://doi.org/10.1016/j.jclepro.2014.05.008.

    Article  Google Scholar 

  • Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., & Taromi, K. (2014). Applying data envelopment analysis approach to improve energy efficiency and reduce greenhouse gas emission of rice production. Engineering in Agriculture, Environment & Food, 7(4), 155–162. https://doi.org/10.1016/j.eaef.2014.06.001.

    Article  Google Scholar 

  • Nabavi-Pelesaraei, A., Hoseinzadeh-Bandbafha, B., Qasemi-Kordkheili, P., Kouchaki-Penchah, H., & Riahi-Dorcheh, F. (2016). Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production. Energy, 103, 672–678. https://doi.org/10.1016/j.energy.2016.03.003.

    Article  Google Scholar 

  • Nabavi-Pelesaraei, A., Rafiee, S., Mohtasebi, S. S., Hosseinzadeh-Bandbafha, H., & Chau, K. W. (2017). Energy consumption enhancement and environmental life cycle assessment in paddy production using optimization techniques. Journal of Cleaner Production, 162, 571–586. https://doi.org/10.1016/j.jclepro.2017.06.071.

    Article  CAS  Google Scholar 

  • Nabavi-Pelesaraei, A., Rafiee, S., Mohtasebi, S. S., Hoseinzadeh-Bandbafha, H., & Chau, K. (2018). Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production. Science of the Total Environment, 631/632, 1279–1294. https://doi.org/10.1016/j.scitotenv.2018.03.088.

    Article  CAS  Google Scholar 

  • Nassiri, S. M., & Singh, S. (2009). Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique. Applied Energy, 86(7/8), 132–135. https://doi.org/10.1016/j.apenergy.2008.10.007.

    Article  Google Scholar 

  • Nemecek, T., & Kagi, T., (2007). Life cycle inventories of Swiss and European agricultural production systems. Final report Eco invent V2.0 No. 15a. Agroscope Reckenholz—Taenikon Research Station ARTM, Swiss Centre for Life Cycle Inventories, Zurich and Dubendorf, CH.

  • Pathak, H., & Wassmann, R. (2007). Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: I. Generation of technical coefficients. Agricultural Systems, 94(3), 807–825. https://doi.org/10.1016/j.agsy.2006.11.015.

    Article  Google Scholar 

  • Pishgar-Komleh, S. H., Sedeedpari, P., & Rafiee, S. (2011). Energy and economic analysis of rice production under different farm levels in Guilan province of Iran. Energy, 36(10), 5824–5831. https://doi.org/10.1016/j.energy.2011.08.044.

    Article  Google Scholar 

  • Pishgar-Komleh, S. H., Ghahderijani, M., & Sefeedpari, P. (2012). Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. Journal of Cleaner Production, 33, 183–191. https://doi.org/10.1016/j.jclepro.2012.04.008.

    Article  Google Scholar 

  • Ramedani, Z., Rafiee, S., & Heidari, M. D. (2011). An investigation on energy consumption and sensitive analysis of soybean production farms. Energy, 36(11), 6340–6344. https://doi.org/10.1016/j.energy.2011.09.042.

    Article  Google Scholar 

  • Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W., Suh, S., Weidema, B. P., & Pennington, D. W. (2004). Life cycle assessment. Part 1: framework, goal and scope definition, inventory analysis, and applications. Environmental International, 30(5), 701–720. https://doi.org/10.1016/j.envint.2003.11.005.

    Article  CAS  Google Scholar 

  • Roy, P., Nei, D., Orikasa, T., Xu, Q., Okadome, H., Nakamura, N., & Shiina, T. (2009). A review of life cycle assessment (LCA) on some food products. Journal of Food Engineering, 90(1), 1–10. https://doi.org/10.1016/j.jfoodeng.2008.06.016.

    Article  Google Scholar 

  • Roy, P., Shimizu, N., & Kimura, T. (2005). Life cycle inventory analysis of rice production by local process. The Japanese Society of Agricultural Machinery, 67(1), 61–67.

    Google Scholar 

  • Roy, P., Shimizu, N., Okadome, H., Shiina, T., & Kimura, T. (2007). Life cycle of rice: challenges and choices for Bangladesh. Journal of Food Engineering, 79(4), 1250–1255. https://doi.org/10.1016/j.jfoodeng.2006.04.017.

    Article  Google Scholar 

  • Sefeedpari, P., Ghahderijani, M., & Pishgar-Komleh, S. H. (2013). Assessment the effect of wheat farm sizes on energy consumption and CO2 emission. Journal of Renewable Sustainable Energy, 5, 1–15.

    Article  Google Scholar 

  • Shahin, S., Jafari, A., Mobli, A., Rafiee, S., & Karimi, M. (2008). Effect of farm size on energy ratio for wheat production: a case study from Ardabil province of Iran. American–Eurasian Journal of Agricultural & Environment Science, 3(4), 604–608.

    Google Scholar 

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., & Sirotenko, O., (2007). Agriculture. In: Metz, B., O. R. Davidson, P. R. Bosch, R. Dave, L. A. Meyer (eds) Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 497–540.

  • Soltani, A., Rajabi, M. H., Zeinali, E., & Soltani, E. (2013). Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran. Energy, 50, 54–61. https://doi.org/10.1016/j.energy.2012.12.022.

    Article  CAS  Google Scholar 

  • Tzilivakis, J., Warner, D. J., May, M., Lewis, K. A., & Jaggard, K. (2005). An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris L.) production in the UK. Agricultural Systems, 85(1), 101–119. https://doi.org/10.1016/j.agsy.2004.07.015.

    Article  Google Scholar 

  • Unakitan, G., Hurma, H., & Yilmaz, F. (2010). An analysis of energy use efficiency of canola production in Turkey. Energy, 35(9), 3623–3627. https://doi.org/10.1016/j.energy.2010.05.005.

    Article  Google Scholar 

  • Wang, M., Wu, W., Liu, W., & Bao, Y. (2007). Life cycle assessment of the winter wheat-summer maize production system on the North China Plain. International Journal of Sustainable Development and World Ecology, 14(4), 400–407. https://doi.org/10.1080/13504500709469740.

    Article  Google Scholar 

  • Wang, M., Xia, X., Zhang, Q., & Liu, J. (2010). Life cycle assessment of a rice production system in Taihu region, China. International Journal of Sustainable Development and World Ecology, 17(2), 157–161. https://doi.org/10.1080/13504501003594224.

    Article  Google Scholar 

  • Zhang, W., Qi, Y., & Zhang, Z. (2006). A long-term forecast analysis on worldwide land uses. Environmental Monitoring & Assessment, 119, 609–620. https://doi.org/10.1007/s10661-005-9046-z.

    Article  Google Scholar 

  • Wood, S., & Cowie, A., (2004). A review of greenhouse gas emission factors for fertilizer production. Research and Development Division, State Forests of New South Wales. Cooperative Research Center for Greenhouse Accounting.

    Google Scholar 

  • Yang, S. S., Lai, C. M., Chang, H. L., Chang, E. H., & Wei, C. B. (2009). Estimation of methane and nitrous oxide emissions from paddy fields in Taiwan. Renewable Energy, 34(8), 1916–1922. https://doi.org/10.1016/j.renene.2008.12.016.

    Article  CAS  Google Scholar 

  • Yodkhum, S., Gheewala, S. H., & Sampattagul, S. (2017). Life cycle GHG evaluation of organic rice production in northern Thailand. Journal of Environment Management, 196, 217–223. https://doi.org/10.1016/j.jenvman.2017.03.004.

    Article  CAS  Google Scholar 

  • Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., & Crowley, D. (2010). Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems & Environment, 139(4), 469–475. https://doi.org/10.1016/j.agee.2010.09.003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Dastan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, E., Niknejad, Y., Fallah, H. et al. Life cycle assessment of rice production systems in different paddy field size levels in north of Iran. Environ Monit Assess 191, 202 (2019). https://doi.org/10.1007/s10661-019-7344-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7344-0

Keywords

Navigation