Advertisement

Adsorptive removal of phosphate from aqueous solutions by thermally modified copper tailings

  • Runjuan ZhouEmail author
  • Youbao Wang
  • Ming Zhang
  • Pei Xin Yu
  • Jiyuan Li
Article
  • 174 Downloads

Abstract

In this study, thermally modified copper tailings (TMCT) were used to adsorb phosphate in aqueous solutions through experiments. The characterization of TMCT and unmodified copper tailings (UMCT) was done by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The effects of pH, adsorbent dosage, contact time, and initial phosphate concentrations on phosphate adsorption were investigated. We studied the adsorption ability of TMCT and UMCT at 298 K, and the Langmuir isotherm model closely described the adsorption isotherm data, indicating that the maximum adsorption capacity (Qmax) of the TMCT and UMCT was 14.25 mg g−1 and 2.08 mg g−1, respectively. In addition, the adsorption isotherms of TMCT were analyzed at 288 K, 298 K, and 308 K, and the calculated Qmax of phosphate were 9.83 mg g−1 at 288 K, 14.25 mg g−1 at 298 K, and 11.55 mg g−1 at 308 K. Finally, the concentration of copper in the effluent was checked, and the content was 130 mg L−1. Then, the effluent was adsorbed by Eichhornia crassipes stem biochar; after adsorption, the concentration of the secondary effluent was 0.7 mg L−1, which is lower than the grade II classification (1.0 mg L−1) of the integrated wastewater discharge standard (GB8978-1996). The results suggest that the TMCT can be effectively and environmentally friendly used to adsorb phosphate from aqueous solutions.

Keywords

Phosphate Copper tailings Adsorbent Thermally modification Adsorption isotherms Adsorption capacity 

Notes

Funding information

This research is supported by National Natural Science Youth Foundation of China (Grant No. 51409001), Excellent Talents Supporting program of Higher Education of Anhui (Grant No. gxyqZD2016127), Anhui Provincial Natural Science Foundation (1808085QE146), Anhui Provincial Higher Education promotion program Humanities and Social Sciences General Project (TSSK2016B14), the College Natural Science Foundation of Major Project of Anhui, China (KJ2018ZD033), and the Foundation of Anhui Provincial Key Lab. of the Conservation and Exploitation of Biological Resources.

References

  1. Acelas, N. Y., Martin, B. D., López, D., & Jefferson, B. (2015). Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 119, 1353–1360.CrossRefGoogle Scholar
  2. Almasi, A., Omidi, M., Khodadadian, M., Khamutian, R., & Gholivand, M. B. (2012). Lead (II) and cadmium (II) removal from aqueous solution using processed walnut shell: kinetic and equilibrium study. Toxicological and Environmental Chemistry, 94(4), 660–671.CrossRefGoogle Scholar
  3. Alshameri, A., Yan, C., & Lei, X. (2014). Enhancement of phosphate removal from water by TiO2/Yemeni natural zeolite: preparation, characterization and thermodynamic. Microporous and Mesoporous Materials, 196, 145–157.CrossRefGoogle Scholar
  4. Biswas, B. K., Inoue, K., Ghimire, K. N., Harada, H., Ohto, K., & Kawakita, H. (2008). Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium. Bioresource Technology, 99, 8685–8690.CrossRefGoogle Scholar
  5. Choi, J. W., Hong, S. W., Kim, D. J., & Lee, S. H. (2012). Investigation of phosphate removal using sulphate-coated zeolite for ion exchange. Environmental Technology, 33, 2329–2335.CrossRefGoogle Scholar
  6. Dehass, D. W., Wentzel, M. C., & Ekama, G. A. (2000). The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal: part 1: literature review. Water SA, 26, 439–452.Google Scholar
  7. Di, Z. C., Cao, Y., Yang, F. L., Cheng, F. Q., & Zhang, K. (2018). Studies on steel slag as an oxygen carrier for chemical looping combustion. Fuel, 226(15), 618–626.CrossRefGoogle Scholar
  8. Dodds, W. K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J., Pitts, K. L., Riley, A. J., Schloesser, J. T., & Thornbrugh, D. J. (2008). Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environmental Science & Technology, 43, 12–19.CrossRefGoogle Scholar
  9. Fang, H. W., Cui, Z. H., He, C. J., Huang, L., & Chen, M. H. (2017). Phosphorus adsorption onto clay minerals and iron oxide with consideration of heterogeneous particle morphology. Sci. Total Environ, 605-606, 357–367.CrossRefGoogle Scholar
  10. Franco, D., Lee, J., Arbelaez, S., Cohen, N., & Kim, J. Y. (2017). Removal of phosphate from surface and wastewater via electrocoagulation. Ecological Engineering, 108, 589–596.CrossRefGoogle Scholar
  11. Fu, P. F., Yang, T. W., Hui, J. F., & Yang, F. (2015). Synthesis of mesoporous silica MCM-41 using sodium silicate derived from copper ore tailings with an alkaline molted-salt method. Journal of Industrial and Engineering Chemistry, 29(25), 338–343.CrossRefGoogle Scholar
  12. Goscianska, J., Ptaszkowska-Koniarz, M., Frankowski, M., Franus, M., Panek, R., & Franus, W. (2018). Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash. Journal of Colloid and Interface Science, 513, 72–81.CrossRefGoogle Scholar
  13. Guaya, D., Hermassi, M., Valderrama, C., Farran, A., & Cortina, J. L. (2016). Recovery of ammonium and phosphate from treated urban wastewater by using potassium clinoptilolite impregnated hydrated metal oxides as N-P-K fertilizer. Journal of Environmental Chemical Engineering, 4(3), 3519–3526.CrossRefGoogle Scholar
  14. Huang, W. Y., Li, D., Liu, Z. Q., Tao, Q., Zhu, Y., Yang, J., & Zhang, Y. M. (2016). Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La (OH)3-modified exfoliated vermiculites as highly efficient phosphate adsorbents. Chemical Engineering Journal, 236, 191–201.CrossRefGoogle Scholar
  15. Hussain, S., Aziz, H. A., Isa, M. H., Ahmad, A., Leeuwen, J. V., Zou, L., Beecham, S., & Umar, M. (2011). Orthophosphate removal from domestic wastewater using limestone and granular activated carbon. Desalination, 271(1–3), 265–272.CrossRefGoogle Scholar
  16. Jiang, F. J., Tan, J., Sun, Q. Y., Li, M., & Wang, W. (2008). Oxidized copper mine tailings and its adsorption on phosphate from aqueous solution. Environment and Chemistry, 27(5), 600–604.Google Scholar
  17. Jiang, L., Ling, T. C., Shi, C. J., & Pan, S. Y. (2018). Characteristics of steel slags and their use in cement and concrete—A review. Resources, Conservation and Recycling, 136, 187–197.CrossRefGoogle Scholar
  18. Koilraj, P., & Sasaki, K. (2017). Selective removal of phosphate using La-porous carbon composites from aqueous solutions: batch and column studies. Chemical Engineering Journal, 317, 1059–1068.CrossRefGoogle Scholar
  19. Kong, L. Z., Xue, F., Chen, L. L., Sun, Q. Y., & Yang, L. Z. (2008). Adsorption of phosphate on copper mine tailings samples. Environmental Pollution & Control, 30(5), 15–18.Google Scholar
  20. Lalley, J., Han, C., Li, X., Dionysiou, D. D., & Nadagouda, M. N. (2016). Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests. Chemical Engineering Journal, 284, 1386–1396.CrossRefGoogle Scholar
  21. Li, G., Gao, S., Zhang, G., & Zhang, X. W. (2014). Enhanced adsorption of phosphate from aqueous solution by nanostructured iron (III)-copper (II) binary oxides. Chemical Engineering Journal, 235, 124–131.CrossRefGoogle Scholar
  22. Li, F. H., Wu, W. H., Li, R. Y., & Fu, X. Y. (2016a). Adsorption of phosphate by acid-modified fly ash and palygorskite in aqueous solution: experimental and modeling. Applied Clay Science, 132-133, 343–352.CrossRefGoogle Scholar
  23. Li, Z. W., Huang, B., Huang, J. Q., Chen, G. Q., Xiong, W. P., Nie, X. D., Ma, W. M., & Zeng, G. M. (2016b). Influence of different phosphates on adsorption and leaching of Cu and Zn in red soil. Transactions of Nonferrous Metals Society of China, 26(2), 536–543.CrossRefGoogle Scholar
  24. Liu, T., Wu, K., & Zeng, L. (2012). Removal of phosphorous by a composite metal oxide adsorbent derived from manganese ore tailings. Journal of Hazardous Materials, 217-218, 29–35.CrossRefGoogle Scholar
  25. Liu, J. Y., Zhou, Q., Chen, J. H., Zhang, L., & Chang, N. (2013). Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber. Chemical Engineering Journal, 215-216(0), 859–867.CrossRefGoogle Scholar
  26. Loganathan, P., Vigneswaran, S., Kandasmt, J., & Bolan, N. S. (2014). Removal and recovery of phosphate from water using sorption. Critical Reviews in Environmental Science and Technology, 44, 847–907.CrossRefGoogle Scholar
  27. Lu, J. B., Liu, H. J., Zhao, X., Jefferson, W., Cheng, F., & Qu, J. H. (2014). Phosphate removal from water using freshly formed Fe-Mn binary oxide: adsorption behaviors and mechanisms. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 455, 11–18.CrossRefGoogle Scholar
  28. Mateus, D. M. R., Vaz, M. M. N., & Pinho, H. J. O. (2012). Fragmented limestone wastes as a constructed wetland substrate for phosphorus removal. Ecological Engineering, 41, 65–59.CrossRefGoogle Scholar
  29. Mignardi, S., Corami, A., & Ferrini, V. (2012). Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere, 86(4), 354–360.CrossRefGoogle Scholar
  30. Mitrogiannis, D., Psychoyou, M., Baziotis, I., Inglezakis, V. J., Koukouzas, N., Tsoukalas, N., Palles, D., Kamitsos, E., Oikonomou, G., & Markou, G. (2017). Removal of phosphate from aqueous solutions by adsorption onto Ca(OH)2 treated natural clinoptilolite. Chemical Engineering Journal, 320, 510–522.CrossRefGoogle Scholar
  31. Mo, L. W., Zhang, F., Deng, M., Jin, F., Abir, A. T., & Wang, A. G. (2017). Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates. Cement and Concrete Composites, 83, 138–145.CrossRefGoogle Scholar
  32. Mouiya, M., Abourriche, A., Bouazizi, A., Benhammou, A., Hafiane, Y. E., Abouliatim, Y., Nibou, L., Oumam, M., Ouammou, M., Smith, A., & Hannache, H. (2018). Flat ceramic microfiltration membrane based on natural clay and Moroccan phosphate for desalination and industrial wastewater treatment. Desalination, 427, 42–50.CrossRefGoogle Scholar
  33. Nguyen, T. A. H., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Lee, D. J., Nguyen, P. D., & Bui, X. T. (2014). Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: potential and obstacles. Bioresource Technology, 169, 750–762.CrossRefGoogle Scholar
  34. Panswad, T., Doungchai, A., & Anotai, J. (2003). Temperature effect on microbial community of enhanced biological phosphorus removal system. Water Research, 37, 409–415.CrossRefGoogle Scholar
  35. San, A., & Tüzen, M. (2013). Adsorption of silver from aqueous solution onto raw vermiculite and manganese oxide-modified vermiculite. Microporous and Mesoporous Materials, 170(170), 155–163.Google Scholar
  36. Sevcenco, A. M., Paravidino, M., Vrouwenvelder, J. S., Wolterbeek, H. T., Loosdrecht, M. C. M. V., & Hagen, W. R. (2015). Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes. Water Research, 76, 181–186.CrossRefGoogle Scholar
  37. Sima, T. V., Letshwenyo, M. W., & Lebogang, L. (2018). Efficiency of waste clinker ash and iron oxide tailings for phosphorus removal from tertiary wastewater: batch studies. Environmental Technology and Innovation, 11, 49–63.CrossRefGoogle Scholar
  38. Song, L. Z., Huo, J. B., Wang, X. L., Yang, F. F., He, J., & Li, C. Y. (2016). Phosphate adsorption by a Cu (II)-loaded polyethersulfone-type metal affinity membrane with the presence of coexistent ions. Chemical Engineering Journal, 284, 182–193.CrossRefGoogle Scholar
  39. Su, Y., Cui, H., Li, Q., Gao, S., & Shang, J. K. (2013). Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Research, 47, 5018–5026.CrossRefGoogle Scholar
  40. Sun, Z. H., Chen, D. Y., Chen, B. D., Kong, L. J., & Su, M. H. (2018). Enhanced uranium(VI) adsorption by chitosan modified phosphate rock. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 547, 141–147.  https://doi.org/10.1016/j.colsurfa.2018.02.043.CrossRefGoogle Scholar
  41. Yang, S. J., Ding, D., Zhao, Y. X., Huang, W. L., Zhang, Z. Y., Lei, Z. F., & Yang, Y. N. (2013a). Investigation of phosphate adsorption from aqueous solution using Kanuma mud: behaviors and mechanisms. Journal of Environmental Chemical Engineering, 1, 355–362.CrossRefGoogle Scholar
  42. Yang, S. J., Zhao, Y. X., Chen, R. Z., Feng, C. P., Zhang, Z. Y., Lei, Z. F., & Yang, Y. N. (2013b). A novel tablet porous material developed as adsorbent for phosphate removal and recycling. Journal of Colloid and Interface Science, 396, 197–204.CrossRefGoogle Scholar
  43. Yang, Q., Wang, X. L., Luo, W., Sun, J., Xu, Q. X., Chen, F., Zhao, J. W., Wang, S. N., Yao, F. B., Wang, D. B., Li, X. M., & Zeng, G. M. (2018). Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresource Technology, 247, 537–544.CrossRefGoogle Scholar
  44. Yu, J., Liang, W., Wang, L., Li, F., Zou, Y., & Wang, H. (2015) Phosphate removal from domestic wastewater using thermally modified steel slag. Journal of Environmental Sciences, 31, 81–88.CrossRefGoogle Scholar
  45. Zamparas, M., Gianni, A., Stathi, P., Deligiannakis, Y., & Zacharias, I. (2012). Removal of phosphate from natural waters using innovative modified bentonites. Applied Clay Science, 62-63, 101–106.CrossRefGoogle Scholar
  46. Zeng, L., Li, X. M., & Liu, J. D. (2004). Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Research, 38(5), 1318–1326.CrossRefGoogle Scholar
  47. Zhang, H., Chen, Z., Gao, Y., & Sun, Q. Y. (2010). Adsorption-desorption characteristics of dissolved phosphorus on surface of copper mine tailings. J Agro-Environ Sci, 29(8), 1542–1546.Google Scholar
  48. Zhang, L., Liu, J. Y., Wan, L. H., Zhou, Q., & Wang, X. Z. (2012a). Batch and fixed-bed column performance of phosphate adsorption by lanthanum-doped activated carbon fiber. Water, Air, & Soil Pollution, 223, 5893–5902.CrossRefGoogle Scholar
  49. Zhang, Y., Xia, S. B., He, F., Xu, D., Kong, L. W., & Wu, Z. B. (2012b). Phosphate removal of acid wastewater from high-phosphate hematite pickling process by in-situ self-formed dynamic membrane technology. Desalination and Water Treatment, 37, 77–83.CrossRefGoogle Scholar
  50. Zhang, C., Li, Y. Q., Wang, F. H., Yu, Z. G., Wei, J. J., Yang, Z. Z., Ma, C., Li, Z. H., Xu, Z. Y., & Zeng, G. M. (2017). Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution. Applied Surface Science, 396, 1783–1792.CrossRefGoogle Scholar
  51. Zhang B, Chen N, Feng CP, Zhang ZY (2018) Adsorption for phosphate by crosslinked/non-crosslinked-chitosan-Fe(III) complex sorbents: characteristic and mechanism, 353: 361–372.Google Scholar
  52. Zhou, R. J., Wang, Y. B., Zhang, M., Li, J., Gui, Y. N., Tang, Y. Y., Yu, B. X., & Yang, Y. R. (2018). Effect of heating temperature and time on the phosphate adsorption capacity of thermally modified copper tailings. Water Science and Technology, 77(11), 2668–2676.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Runjuan Zhou
    • 1
    • 2
    Email author
  • Youbao Wang
    • 1
  • Ming Zhang
    • 2
  • Pei Xin Yu
    • 1
  • Jiyuan Li
    • 1
  1. 1.College of Life SciencesAnhui Normal UniversityWuhuChina
  2. 2.College of Electrical EngineeringAnhui Polytechnic UniversityWuhuPeople’s Republic of China

Personalised recommendations