Advertisement

Heavy metals in the volcanic and peri-urban terrain watershed of the River Yautepec, Mexico

  • Silvia Viridiana Vargas-Solano
  • Francisco Rodríguez-GonzálezEmail author
  • Martha Lucia Arenas-Ocampo
  • Rita Martínez-Velarde
  • S. B. Sujitha
  • M. P. JonathanEmail author
Article
  • 62 Downloads

Abstract

Thirty-four water samples were collected all along the course of River Yautepec, Morelos State, Central Mexico, in three different zones based on the physical and anthropogenic setting. In situ measurements of physical characteristics (temperature, pH, conductivity, and turbidity) were also performed at each sampling station. Likewise, total/dissolved metal concentrations (Fe, Mn, Cr, Cu, Ni, Pb, Zn, Cd, As, and Pb) were determined using an atomic absorption spectrophotometer. Located in a peri-urban and volcanic zone of Central Mexico, the river system presented impacts of both natural and anthropogenic activities. Results revealed differences in pH values (6.7–8.23) in all the three zones probably due to the influences of volcanic ash and local geological formations, whereas conductivity levels (635–1098 μs/cm) were high indicating the effect of agricultural and industrial activities. The relative order of the concentrations of metals in both the total and dissolved fractions was observed to be in the following order: zone I, Fe > Zn > Mn > Cu > Pb > Ni > Cr > As > Cd > Hg; zone II, Fe > Zn > Pb > Ni > Mn > Cu > Cr > Cd > As > Hg; zone III, Fe > Pb > Zn > Mn > Ni > Cu > As > Cd > Cr > Hg. Calculated heavy metal evaluation index (HEI) values indicated less contamination. However, concentrations of Fe and Pb were observed to be higher than the permissible limits set forth by the Mexican government for human consumption. Henceforth, the prerequisite for maintaining and improving the health of a river system depends on continuous long-term monitoring of the dynamic ecosystem for sustainable management.

Keywords

River Dissolved heavy metals Freshwater Natural and external inputs Volcanic terrain Mexico 

Notes

Acknowledgements

FRG wishes to thank the financial support through the projects SIP-IPN No. 20170470 and 20180759 by the Secretaria de Investigación y Posgrado of Instituto Politécnico Nacional (IPN), Ciudad de Mexico. FRG, MPJ, and SBS thank the Sistema Nacional de Investigadores (SNI), CONACyT. FRG and MPJ thank COFAA & EDI of IPN, México. This article is the 98th contribution (partial) from the members (SBS & MPJ) of the Earth System Science Group (ESSG), Chennai, India.

References

  1. Abdel-Satar, A. M. (2005). Water quality assessment of River Nile from Idfo to Cairo. Egyptian Journal of Aquatic Research, 31(2), 200–223.Google Scholar
  2. Ackay, H., Oguz, A., & Karapire, C. (2003). Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Research, 37, 813–822.CrossRefGoogle Scholar
  3. Addabbo, M. D., Sulpizio, R., Guidi, M., Capitani, G., Mantecca, P., & Zanchetta, G. (2015). Ash leachates from some recent eruptions of Mount Etna (Italy) and Popocatepetl (Mexico) volcanoes and their impact on amphibian living freshwater organisms. Biogeoscienes, 12, 7087–7106.CrossRefGoogle Scholar
  4. Agustín-Flores, J., Siebe, C., & Marie, N. G. (2011). Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the sierra Chichinautzin Volcanic Field, south of Mexico City. Journal of Volcanology and Geothermal Research, 201, 143–162.CrossRefGoogle Scholar
  5. Ahmed, M. K., Baki, M. A., Islam, M. S., Kundu, G. K., Habibullah-Al-Mamun, M., Sarkar, S. K., & Hossain, M. M. (2015). Human health risk assessment of heavy metals in tropical fish and shell fish collected from the river Buriganga, Bangladesh. Environmental Science and Pollution Research, 22(20), 15880–15890.CrossRefGoogle Scholar
  6. Ajah, K. C., Ademiluyi, J., & Nnaji, C. C. (2015). Spatiality, seasonality and ecological risks of heavy metals in the vicinity of a degenerate municipal central dumpsite in Enugu, Nigeria. Journal of Environmental Health Science & Engineering, 13, 15.CrossRefGoogle Scholar
  7. Alfayate, B. J. M., González, D. N., Orozco, B. C., Pérez, S. A., & Rodríguez, V. F. J. (2008). Problemas resueltos de contaminación ambiental. Cuestiones y problemas resueltos. Madrid: International Thomson.Google Scholar
  8. Barkatt, A., Pulvirenti, A. L., Adel-Hadadi, M. A., Viragh, C., Senftle, F. E., Thorpe, A. N., & Grant, J. R. (2009). Composition and particle size of superparamagnetic corrosion products in tap water. Water Research, 43, 3319–3325.CrossRefGoogle Scholar
  9. Buchet, J. P., & Lison, D. (2000). Clues and uncertainties in the risk assessment of arsenic in drinking water. Food and Chemical Toxicology, 38, 81–85.CrossRefGoogle Scholar
  10. Cáceres, D. D., Pino, P., Montesinos, N., Atalah, E., Amigo, H., & Loomis, D. (2005). Exposure to inorganic arsenic in drinking wáter and total urinary arsenic concentration in a Chilean population. Environmental Research, 98(2), 151–159.CrossRefGoogle Scholar
  11. Callender, E. (2005). Heavy metals in the environment - historical trends. In B. S. Lollar (Ed.), Treatise on geochemistry - volume 9 (pp. 67–105). Amsterdam: Elsevier.Google Scholar
  12. Chen, W., Chang, A. C., & Wu, L. (2007). Assessing long-term environmental risks of trace elements in phosphate fertilizers. Ecotoxicology and Environmental Safety, 67, 48–58.CrossRefGoogle Scholar
  13. Cheng, H., Zhou, T., Li, Q., Lu, L., & Lin, C. (2014). Anthropogenic chromium emissions in China from 1990 to 2009. PLoS One, 9(2), e87753.CrossRefGoogle Scholar
  14. CONAGUA (Comisión Nacional del Agua). (2012). Atlas del agua en Mexico. Mexico: SEMARNAT.Google Scholar
  15. CONAGUA (Comisión Nacional del Agua). (2015). Actualización de la disponibilidad media anual del agua en el acuífero Cuautla-Yautepec (1702), Estado de Morelos. CONAGUA Publishing Web. https://www.gob.mx/cms/uploads/attachment/file/103146/DR_1702.pdf.
  16. CONAGUA (Comisión Nacional del Agua). (2017). Estadística del Agua en México 2017. Mexico: SEMARNAT.Google Scholar
  17. Edet, A. E., & Offiong, O. E. (2002). Evaluation of water quality pollution indices for heavy metal contamination for monitoring. A case study from Akpabuyo-Odukpani area, Lower cross River Basin (Southeastern Nigeria). GeoJournal, 57, 295–304.CrossRefGoogle Scholar
  18. EPA (Environmental Protection Agency). (2009). Method 3010, acid digestion of aqueous samples and extracts for total metals for analysis by FLAA or ICP spectroscopy. Washington: Environmental Protection Agency.Google Scholar
  19. Faroon, O., Ashizawa, A., Wright, S., et al. (2012). Production, import/export, use, and disposal. In Toxicological profile for cadmium. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US); 2012 Sep. 5.Google Scholar
  20. Fickel, M., & Delgado, G. H. (2017). On the use of different spectral windows in DOAS evaluations: effects on the estimation of SO2 emission rate and mixing ratios during strong emission of Popocatépetl volcano. Chemical Geology, 462, 67–73.CrossRefGoogle Scholar
  21. Garneau, C., Sauvage, S., Sánchez-Pérez, J. M., Lofts, S., Brito, D., Neves, R., & Probst, A. (2017). Modelling trace metal transfer in large rivers under dynamic hydrology: a coupled hydrodynamic and chemical equilibrium model. Environmental Modelling & Software, 89, 77–96.CrossRefGoogle Scholar
  22. Giménez, M. C., Blanes, P. S., Buchhamer, E. E., Osicka, R. M., Morisio, Y., & Farías, S. S. (2013). Assessment of heavy metal concentrations in arsenic contaminated groundwater of the Chaco Plain, Argentina. Environmental Chemistry, 2013, 1–12.Google Scholar
  23. Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., & Groneberg, D. A. (2006). The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology (London, England), 1, 22.CrossRefGoogle Scholar
  24. Goher, M. E., Hassan, A. M., Abdel Moniem, I. A., Fahmy, A. H., & El-Sayed, S. M. (2014). Evaluation of surface water quality and heavy metal indices of Ismailia Canal, Nile River, Egypt. Egyptian Journal of Aquatic Research, 40, 225–233.CrossRefGoogle Scholar
  25. Gupta, A., Rai, D. K., Pandey, R. S., & Sharma, B. (2009). Analysis of some heavy metals in the riverine water, sediment and fish from river Ganges at Allahabad. Environmental Monitoring and Assessment, 157, 449–458.CrossRefGoogle Scholar
  26. Huang, X., Sillanpää, M., Duo, B., & Gjessing, E. T. (2008). Water quality in the Tibetan Plateau: metal contents of four selected rivers. Environmental Pollution, 156, 270–277.CrossRefGoogle Scholar
  27. INEGI (Instituto Nacional de Estadística y Geografia). (2017). Anuario Estadístico y Geográfico de Morelos 2017. México: INEGI.Google Scholar
  28. Jia, H., Wang, S., Wei, M., & Zhang, Y. (2011). Scenario analysis of water pollution control in the typical peri-urban river using a coupled hydrodynamic water quality model. Frontiers of Environmental Science & Engineering in China, 5(2), 255–265.CrossRefGoogle Scholar
  29. Jiao, W., Chen, W., Chang, A. C., & Page, A. L. (2012). Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environmental Pollution, 168, 44–53.CrossRefGoogle Scholar
  30. Jiménez, C. B. E. (2001). La contaminación ambiental en México: causas, efectos y tecnología apropiada. México: Limusa.Google Scholar
  31. Jung, K. Y., Lee, K.-L., Im, T. H., Lee, I. J., Kim, S., Han, K.-Y., et al. (2016). Evaluation of water quality for the Nakdong River watershed using multivariate analysis. Environmental Technology and Innovation, 5, 67–82.CrossRefGoogle Scholar
  32. Kalpakjian, S., & Schmid, S. R. (2002). Manufactura, ingeniería y tecnología. México: Pearson Educación de México.Google Scholar
  33. Karbassi, A. R., Torabi, F., Ghazban, F., & Ardestani, M. (2011). Association of trace metals with various sedimentary phases in dam reservoirs. International Journal of Environmental Science and Technology, 8(4), 841–852.CrossRefGoogle Scholar
  34. Kibria, G., Lau, T. C., & Wu, R. (2012). Innovative ‘artificial mussels’ technology for assessing spatial and temporal distribution of metals in Goulburn–Murray catchments waterways, Victoria, Australia: effects of climate variability (dry vs. wet years). Environmental International, 50, 38–46.CrossRefGoogle Scholar
  35. Mancilla-Villa, O. R., Ortega-Escobar, H. M., Ramírez-Ayala, C., Uscanga-Montera, E., Ramos-Bello, R., & Reyes-Ortigoza, A. L. (2012). Metales pesados totales y arsénico en el agua para riego de Puebla y Veracruz, México. Revista Internacional de Contaminacion Ambiental, 28(1), 39–48.Google Scholar
  36. Márquez, A., Verma, S. P., Anguita, F., Oyarzun, R., & Brandle, J. L. (1999). Tectonics and volcanism of Sierra Chichinautzin: extensión at the front of the Central Trans-Mexican Volcanic belt. Journal of Volcanology and Geothermal Research, 93, 125–150.CrossRefGoogle Scholar
  37. Mohammed, A. S., Kapri, A., & Goel, R. (2011). Heavy metal pollution: sources, impact and remedies. In M. S. Khan, A. Zaidi, R. Goel, & J. Musarrat (Eds.), Biomanagement of metal-contaminated soils (pp. 1–28). New York: Springer.Google Scholar
  38. Moiseenko, T. I., Gashkina, N. A., Sharova, Y. N., & Kudryavtseva, L. P. (2008). Ecotoxicological assessment of water quality and ecosystem health: a case study of the Volga River. Ecotoxicology and Environmental Safety, 71(3), 837–850.CrossRefGoogle Scholar
  39. Molina, G. R. S., Böhnel, H. N., & Hernández, T. (2003). Paleomagnetism of the Cretaceous Morelos and Mezcala Formations, southern Mexico. Tectonophysics, 361, 301–317.CrossRefGoogle Scholar
  40. Moore, G., & Carmichael, I. S. E. (1998). The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contributions to Mineralogy and Petrology, 130(3–4), 304–319.CrossRefGoogle Scholar
  41. Morrison, J. M., Goldhaber, M. B., Mislls, C. T., Breit, G. N., Hooper, R. L., et al. (2015). Weathering and transport of chromium and nickel from serpentinites in the Coast Range ophiolite to the Sacramento valley, California, USA. Applied Geochemistry, 61, 72–86.CrossRefGoogle Scholar
  42. Mousavi, S. R., Balali-Mood, M., Riahi-Zanjani, B., Yousefzadeh, H., & Sadeghi, M. (2013). Concentrations of mercury, lead, chromium, cadmium, arsenic and aluminium in irrigation water wells and wastewaters used for agriculture in Mashhad, North eastern Iran. The International Journal of Occupational and Environmental Medicine, 4(2), 80–86.Google Scholar
  43. Nasrabadi, T., Ruegner, H., Sirdari, Z. Z., Schwientek, M., & Grathwohl, P. (2016). Using total suspended solids (TSS) and turbidity as proxies for evaluation of metal transport in river water. Applied Geochemistry, 68, 1–9.CrossRefGoogle Scholar
  44. Nordstrom, D. K. (2011). Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Applied Geochemistry, 26(11), 1777–1791.CrossRefGoogle Scholar
  45. Nriagu, J. O. (1986). Chemistry of the river Niger II. Trace metals. Science of the Total Environment, 58(1), 89–92.CrossRefGoogle Scholar
  46. Oswald, S. U. (2016). Sustainability transition in a vulnerable river basin in Mexico. In B. H. Günter, S. U. Oswald, J. Grin, & J. Scheffran (Eds.), Handbook on sustainability transition and sustainable peace (pp. 675–704). Switzerland: Springer.CrossRefGoogle Scholar
  47. Oyem, H. H., Oyem, I. M., & Ezeweali, D. (2014). Temperature, pH, electrical conductivity, total dissolved solids and chemical oxygen demand of groundwater in Boji-BojiAgbor/Owa area and immediate suburbs. Research Journal of Environmental Sciences, 8, 444–450.CrossRefGoogle Scholar
  48. Pinto, V., & Maheshwari, B. (2014). A framework for assessing river health in peri urban landscapes. Ecohydrology and Hydrobiology, 14, 121–131.CrossRefGoogle Scholar
  49. Roldán, P. G., & Ramírez, R. J. J. (2008). Fundamentos limnología neotropical. Antioquia: Universidad de Antioquia.Google Scholar
  50. Ruiz-Picos, R. A., Kohlmann, B., Sedeño-Díaz, J. E., & López-López, E. (2017). Assessing ecological impairments in Neotropical rivers of Mexico: calibration and validation of biomonitoring working party. International Journal of Environmental Science and Technology, 14(9), 1835–1852.CrossRefGoogle Scholar
  51. Saha, R., Nandi, R., & Saha, B. (2011). Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry, 64(10), 1782–1806.CrossRefGoogle Scholar
  52. Seyler, P. T., & Boaventura, G. R. (2003). Distribution and partition of trace metals in the Amazon basin. Hydrological Processes, 17(7), 1345–1361.CrossRefGoogle Scholar
  53. Shamrukh, M., & Abdel-Wahab, A. (2011). Water pollution and riverbank filtration for water supply along River Nile, Egypt. In C. Ray & M. Shamrukh (Eds.), Riverbank filtration for water security in desert countries (pp. 5–28). Quena: Springer.CrossRefGoogle Scholar
  54. Shiller, A. M. (1997). Dissolved trace elements in the Mississippi river: seasonal, interannual, and decadal variability. Geochimica et Cosmochimica Acta, 61(20), 4321–4330.CrossRefGoogle Scholar
  55. Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22, 464–475.CrossRefGoogle Scholar
  56. SSA (Secretaría de Salud). (1994). Norma Oficial Mexicana NOM 127-SSA1-1994, Salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. México: Diario Oficial de la Federación.Google Scholar
  57. Stewart, C., Johnston, D. M., Leonard, G. S., Horwell, C. J., Thordarson, T., & Cronin, S. J. (2006). Contamination of water supplies by volcanic ashfall: a literature review and simple impact modelling. Journal of Volcanology and Geothermal Research, 158, 296–306.CrossRefGoogle Scholar
  58. Sundaray, S. K., Nayak, B. B., Kanungo, T. K., & Bhatta, D. (2012). Dynamics and quantification of dissolved heavy metals in the Mahanadi river estuarine system, India. Environmental Monitoring and Assessment, 184, 1157–1179.CrossRefGoogle Scholar
  59. Taquet, N., Meza, H. I., Stremme, W., Bezanilla, A., Grutter, M., Campion, R., Palm, M., & Boulesteix, T. (2017). Continuous measurements of SiF4 and SO2 by thermal emission spectroscopy: insight from a 6-month survey at the Popocatépetl volcano. Journal of Volcanology and Geothermal Research, 341, 255–268.CrossRefGoogle Scholar
  60. Telesca, L., Lovallo, M., & Flores-Marquez, E. L. (2017). Characterization volcanic states at Popocatepetl, Mexico by informational analysis of continuous geomagnetic signal. Physica A: Statistical Mechanics and its Applications, 487, 178–184.CrossRefGoogle Scholar
  61. Teunissen, K., Abrahamse, A., Leijssen, H., Rietveld, L., & van Dijk, H. (2008). Removal of both dissolved and particulate iron from groundwater. Drinking Water Engineering and Science Discussions, 1, 87–115.CrossRefGoogle Scholar
  62. Thompson, T., Fawell, J., Kunikane, S., Jackson, D., Appleyard, S., Callan, P., Bartraman, J., & Kingston, P. (2007). Chemical safety of drinking-water: assessing priorities for risk management. Geneva: World Health Organization.Google Scholar
  63. Tkachenko, A. N., Tkachenko, O. V., Lychagin, M. Y., & Kasimov, N. S. (2017). Heavy metal flows in aquatic systems of the Don and Kuban river delta. Doklady Earth Sciences, 474(1), 587–590.CrossRefGoogle Scholar
  64. UNEP (United Nations Environment Programme). (2008). Interim review of scientific information on cadmium.Google Scholar
  65. US Environmental Protection Agency, (1994). In: Creed, J. T., Martin, T. D., Lobring, L. B., & O'Dell, J.W (Eds) Method 200.9, Revision 2.2: Determination of Trace Elements by Stabilized Temperature Graphic Furnace Atomic Absorption, 43p.Google Scholar
  66. Varol, M., & Sen, B. (2012). Assessment of nutrient and heavy metal contamination in surface water and sediments of the Upper Tigris River, Turkey. Catena, 92, 1–10.CrossRefGoogle Scholar
  67. Varol, M., Gökot, B., Bekleyen, A., & Sen, B. (2012). Water quality assessment and apportionment of pollution sources of Tigris River (Turkey) using multivariate statistical techniques—a case study. River Research and Applications, 28, 1428–1438.CrossRefGoogle Scholar
  68. Velázquez, M. A., Pimentel, J. L., & Ortega, M. (2011). Estudio de la distribución de boro en fuentes de agua de la cuenca del río Duero, México, utilizando análisis estadístico multivariado. Revista Internacional de Contaminación Ambiental, 27(1), 19–30.Google Scholar
  69. Verrengia, G. N. R., & Kesten, E. M. (1994). Levels of heavy metals in waters from the la Plata river, Argentina: an approach to assess bioavailability. Bulletin of Environmental Contamination and Toxicology, 52(2), 254–260.Google Scholar
  70. Wang, Y., Chen, P., Cui, R., Si, W., Zhang, Y., & Ji, W. (2009). Heavy metal concentration in water, sediment and tissues of two fish species (Triplohysa pappenheimi, Gobio hwanghensis) from the Lanzhou section of the Yellow. Environmental Monitoring and Assessment, 165(1), 97–102.Google Scholar
  71. Wang, X., Cai, Q., Ye, L., & Qu, X. (2012). Evaluation of spatial and temporal variation in stream water quality by multivariate statistical techniques: a case study of the Xiangxi River basin, China. Quaternary International, 282, 137–144.CrossRefGoogle Scholar
  72. Wang, Q., Zhang, Q., Wu, Y., & Wang, X. C. (2017). Physicochemical conditions and properties of particles in urban runoff and rivers: implications for runoff pollution. Chemosphere, 173, 318–325.CrossRefGoogle Scholar
  73. WHO. (2011). Guidelines for drinking-water quality (fourth ed.). Geneva: World Health Organization.Google Scholar
  74. Zarazua, G., Ávila-Pérez, P., Tejeda, S., Barcelo-Quintal, I., & Mártínez, T. (2006). Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 1180–1184.CrossRefGoogle Scholar
  75. Zhang, J., Hua, P., & Krebs, P. (2016). The influences of dissolved organic matter and surfactant on the description of Cu and Zn from road deposited sediment. Chemosphere, 50, 63–70.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro de Desarrollo de Productos Bióticos (CEPROBI)Instituto Politécnico Nacional (IPN)YautepecMexico
  2. 2.Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD)Instituto Politécnico Nacional (IPN)Del. Gustavo A. MaderoMexico

Personalised recommendations