Citizen science sampling programs as a technique for monitoring microplastic pollution: results, lessons learned and recommendations for working with volunteers for monitoring plastic pollution in freshwater ecosystems

  • Shaun A. ForrestEmail author
  • Larissa Holman
  • Meaghan Murphy
  • Jesse C. Vermaire


A citizen science microplastic monitoring method was developed to engage the public and quantify microplastic contamination at various sites along an approximately 550 km length of the Ottawa River from Lake Temiskaming to Hawkesbury, Ontario, Canada. The volunteers filtered 100 L of river water through a 100-μm mesh at their desired location along the Ottawa River. All but one of the river samples (n = 43) contained microplastics, with the vast majority of microplastics identified as microfibers. Microplastic concentrations ranged from 0.02 to 0.41 microplastic pieces per litre. We noted numerous advantages in working with citizen scientists including actively engaging citizens in the research, ease of recruiting volunteers within the established Ottawa Riverkeeper network, and expanded spatial coverage at minimal additional costs. Despite these important advantages, there are some important considerations with citizen scientist sampling including the rare events where volunteers mislabelled sample sheets (e.g. labelling as control instead of river sample) and the relatively low volume of water (100 L) that the volunteers could easily sample using our methodology. Recommendations for future citizen science projects for freshwater microplastic research include utilising an established and engaged network, running both field and lab control samples (blanks) to obtain estimates of contamination with microplastic fibres, and increasing the amount of water filtered to obtain more reliable estimates of microplastic pollution in our freshwater ecosystems.


Citizen science Microplastics Ottawa River Microfibers Wastewater treatment Anthropocene 



  1. Anderson, P. J., Warrack, S., Langen, V., Challis, J. K., Hanson, M. L., & Rennie, M. D. (2017). Microplastic contamination in Lake Winnipeg, Canada. Environmental Pollution, 225, 223–231.CrossRefGoogle Scholar
  2. Barrows, A. P. W., Cristiansen, K. S., Bode, E. T., & Hoellein, T. J. (2018). A watershed-scale citizen science approach to quantifying microplastic concentration in a mixed land-use river. Water Research, 47, 382–392.CrossRefGoogle Scholar
  3. Bonney, R., Shirk, J. L., Phillips, T. B., Wiggins, A., Ballard, H. L., Miller-Rushing, A. J., & Parrish, J. K. (2014). Next steps for citizen science. Science, 243, 1427–1436.Google Scholar
  4. Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines worldwide: sources and sinks. Environmental Science and Technology, 45, 9175–9179.CrossRefGoogle Scholar
  5. Canadian Consulting Engineer (C.C.E.). 2016. Gatineau has 1,300 combined sewer-stormwater overflows in a year [online]. Available at <> [Accessed 11th April, 2018].
  6. Campbell, S. H., Williamson, P. R., & Hall, B. D. (2017). Microplastics in the gastrointestinal tracts of fish and the water from an urban prairie creek. FACETS, 2, 395–409.CrossRefGoogle Scholar
  7. Castañeda, R. A., Avlijas, S., Simard, M. A., & Ricciardi, A. (2014). Microplastic pollution in St. Lawrence river sediments. Canadian Journal of Fisheries and Aquatic Sciences, 71(12), 1767–1771.CrossRefGoogle Scholar
  8. Conrad, C. C., & Hilchey, K. G. (2011). A review of citizen science and community-based environmental monitoring: issues and opportunities. Environmental Monitoring and Assessment, 176, 273–291.CrossRefGoogle Scholar
  9. Dehghani, S., Moore, F., & Akhbarizadeh, R. (2017). Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environmental Science Pollution, 24(24), 20360–20371.CrossRefGoogle Scholar
  10. Estahbanati, S., & Fahrenfeld, N. L. (2016). Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere, 162, 277–284.CrossRefGoogle Scholar
  11. Galgani, F., Hanke, G., & Maes, T. (2015). Global distribution, composition and abundance of marine litter. In M. Bergmann, L. Gutow, & M. Klages (Eds.), Marine Anthropogenic Litter (pp. 29–56). Berlin: Springer.CrossRefGoogle Scholar
  12. Geyer, R., Jambeck, J. R., & Law, K. R. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3, e1700782.CrossRefGoogle Scholar
  13. Gillett, D. J., Pondella, D. J., II, Freiwald, J., Schiff, K. C., Caselle, J. E., Shuman, C., & Weisberg, S. B. (2012). Comparing volunteer and professionally collected monitoring data from the rocky subtidal reefs of Southern California, USA. Environmental Monitoring and Assessment, 184, 3239–3257. Scholar
  14. Hidalgo-Ruz, V., & Thiel, M. (2013). Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): a study supported by a citizen science project. Marine Environmental Research, 87–88, 12–18.CrossRefGoogle Scholar
  15. Hidalgo-Ruz, V., & Thiel, M. (2015). The contribution of citizen scientists to the monitoring of marine litter. In M. Bergmann, L. Gutow, & M. Klages (Eds.), Marine Anthropogenic Litter (pp. 29–56). Berlin: Springer.Google Scholar
  16. Ho, K. F., Lee, S. C., Chow, J. C., & Watson, J. G. (2003). Characterisation of PM 10 and PM 2.5 source profiles for fugitive dust in Hong Kong. Atmospheric Environment, 37(8), 1023–1032.CrossRefGoogle Scholar
  17. Lebreton, L. C. M., van der Zwet, J., Damsteeg, J. W., Slat, B., Andrady, A., & Reisser, J. (2017). River plastic emissions to the world’s oceans. Nature Communications.
  18. Leslie, H. A., Brandsma, S. H., van Velzen, M. J. M., & Vathaak, A. D. (2017). Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environmental International, 101, 133–142.CrossRefGoogle Scholar
  19. Li, J., Liu, H., & Chen, J. P. (2017). Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362–374.CrossRefGoogle Scholar
  20. Mason, S. A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., Fink, P., Papzissimos, D., & Rogers, D. L. (2016). Microplasti pollution is widely detected in US municipal wastewater treatment plant effluent. Environmental Pollution, 218, 1045–1054.CrossRefGoogle Scholar
  21. Masura, J., Baker, J., Foster, G. & Arthur, C. 2015. Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48.Google Scholar
  22. Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology 50(11), 5800-5808.Google Scholar
  23. Ottawa Riverkeeper. (2018). Watershed Facts [online]. Available at [Accessed 14th July 2018].
  24. Plastics—the Facts. 2016. An analysis of European plastics production, demand and waste data [online]. PlasticsEurope, 35 p. Available at Accessed 12 Feb 2019.
  25. Rech, S., Macaya-Caquilpán, V., Pantoja, J. F., Rivadeneira, M. M., Kroeger Campodónico, C., & Thiel, M. (2015). Sampling of riverine litter with citizen scientists — findings and recommendations. Environmental Monitoring and Assessment, 187.
  26. Sutton, R., Mason, S., Stanek, S. K., Willis-Norton, E., Wren, I. F., & Box, C. (2016). Microplastic contamination in the San Francisco Bay, California, USA. Marine Pollution Bulletin, 109, 230–235.CrossRefGoogle Scholar
  27. Talvitie, J., Mikola, A., Koistinen, A., & Setälä, O. (2017). Solutions to microplastic pollution – removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research, 123, 401–407.CrossRefGoogle Scholar
  28. Vermaire, J. C., Pomeroy, C., Herczegh, S. M., Haggard, O., & Murphy, M. (2017). Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. FACETS, 2, 301–314.CrossRefGoogle Scholar
  29. Wagner, M., & Lambert, S. (2018). Freshwater microplastics: emerging environmental contaminants? Frankfurt: Springer.CrossRefGoogle Scholar
  30. Wang, W., Ndungu, A. W., Li, Z., & Wang, J. (2017). Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China. Science of the Total Environment, 575, 1369–1374.CrossRefGoogle Scholar
  31. Windsor, F. M., Tilley, R. M., Tyler, C. R., & Ormerod, S. J. (2019). Microplastic ingestion by riverine macroinvertebrates. Science of the Total Environment, 646, 68–74.CrossRefGoogle Scholar
  32. Yeo, B. G., Takada, H., Taylor, H., Ito, M., Hosoda, J., Allinson, M., Connell, S., Greaves, L., & McGrath, M. (2015). POPs monitoring in Australia and New Zealand using plastic resin pellets, and International Pellet Watch as a tool for education and raising public awareness on plastic debris and POPs. Marine Pollution Bulletin, 101, 137–145.CrossRefGoogle Scholar
  33. Zalasiewicz, J., Waters, C. N., Ivar do Sul, J., Corcoran, P. L., Barnosky, A. D., Cearreta, A., Edgeworth, M., Gałuszka, A., Jeandel, C., Leinfelder, R., McNeill, J. R., Steffen, W., Summerhayes, C., Wagreich, M., Williams, M., Wolfe, A. P., & Yonan, Y. (2016). The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene, 13, 4–17.CrossRefGoogle Scholar
  34. Ziajahromi, S., Neale, P. A., Rintoul, L., & Leusch, F. D. L. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, 112, 93–99.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Geography and Environmental StudiesCarleton UniversityOttawaCanada
  2. 2.Ottawa RiverkeeperOttawaCanada
  3. 3.Institute for Environmental and Interdisciplinary SciencesCarleton UniversityOttawaCanada

Personalised recommendations