Advertisement

Preliminary studies about the role of physicochemical parameters on the organotin compound dynamic in a South American estuary (Bahía Blanca, Argentina)

  • Pamela Y. QuintasEmail author
  • Eleonora M. Fernández
  • Carla V. Spetter
  • Andrés H. Arias
  • Mariano Garrido
  • Jorge E. Marcovecchio
Article
  • 24 Downloads

Abstract

This work provides a preliminary study of the destination, mobility, and availability of tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) in contaminated sediments and water column within Puerto Rosales Port, located in the middle zone of the Bahía Blanca Estuary (Argentina). Therefore, this study presents the first comprehensive results of the role of several physicochemical parameters (temperature, pH, Eh, salinity, turbidity, organic matter, chlorophyll, and macronutrients) in behavior of organotin compounds (OTCs) in a marine-coastal ecosystem. The samples were collected seasonally in May, August, and November during 2014. Levels of OTCs were determined in sediments and water column samples by means of gas chromatography–mass spectrometry analysis. Degradation index analyses suggested not recent inputs of TBT at the area of study. However, results submitted a continuous input of TBT into the column water; further, its distribution and degradation pattern were shown to be influenced by salinity, turbidity, particulate organic matter, chlorophyll, and nitrates. These last two parameters, chlorophyll and nitrates, also were very important for sediment samples. Chlorophyll together with high temperatures recorded in the surface sediments triggers biodegradation process of TBT and DBT resulting in high MBT levels while nitrates seemed to promote debutylation process. Furthermore, pH appeared to influence drastically the adsorption/desorption activity of TBT and DBT in sediment. Finally, the Eh obtained suggested a degradation of TBT thanks to the presence of Fe (III) in this compartment. In addition, in fact, the results outlined a possible MBT additional input that contributes to the pollution observed in the study area.

Graphical abstract

Organotin compounds behavior according to several physicochemical parameters

Keywords

Organotin compounds Chlorophyll Macronutrients Physicochemical parameters Rosales Port 

Notes

Acknowledgements

The authors would like to thank the IADO executive directors and Chemical Oceanography Area’s staff.

Funding information

This research was supported by a doctoral grant funded by the National Council of Scientific and Technological Research (CONICET-Argentina) and was part of the PhD thesis of Pamela Y. Quintas and Eleonora M. Fernández. Funding was provided through research grants by CONICET (PIP D-738 2011), National Agency for Promotion of Science and Technology-ANPCyT (PICT 2015-0709, PICT 2012-2794), and National South University-UNS (PGI 24/Q086, PGI 24/ZQ12, PGI 24/ZQ15).

References

  1. Adams, D. D. (1994) Sediment pore water sampling. In A. Mudroch & S. D. MacKnight (Eds), Handbook of techniques for aquatic sediments sampling, Second Edition CRC Press (pp. 171-202).Google Scholar
  2. Adelman, D., Hinga, K. R., & Pilson, M. E. (1990). Biogeochemistry of butyltins in an enclosed marine ecosystem. Environmental Science & Technology, 24, 1027–1032.  https://doi.org/10.1021/es00077a012.CrossRefGoogle Scholar
  3. APHA, AWWA, WEF. (1998). In L. S. Clesceri, A. E. Greenberg, & A. D. Eaton (Eds.), Standard methods for the examination of water and wastewater (20th ed.). Washington, 996: American Public Health Association.Google Scholar
  4. Ayanda, O. S., Fatoki, O. S., Adekola, F. A., & Ximba, B. J. (2012). Fate and remediation of organotin compounds in seawaters and soils. Chemical Science Transactions, 1, 470–481.  https://doi.org/10.7598/cst2012.177.CrossRefGoogle Scholar
  5. Bancon-Montigny, C., Lespes, G., & Potin-Gautier, M. (2000). Improved routine speciation of organotin compounds in environmental samples by pulsed flame photometric detection. Journal of Chromatography A, 896, 149–158.  https://doi.org/10.1016/S0021-9673(00)00595-1.CrossRefGoogle Scholar
  6. Bangkedphol, S., Keenan, H. E., Davidson, C., Sakultantimetha, A., & Songsasen, A. (2009). The partition behavior of tributyltin and prediction of environmental fate, persistence and toxicity in aquatic environments. Chemosphere, 77, 1326–1332.  https://doi.org/10.1016/j.chemosphere.2009.09.046.CrossRefGoogle Scholar
  7. Berg, M., Arnold, C. G., Müller, S. R., Mühlemann, J., & Schwarzenbach, R. P. (2001). Sorption and desorption behavior of organotin compounds in sediment−pore water systems. Environmental Science & Technology, 35, 3151–3157.  https://doi.org/10.1021/es010010f.CrossRefGoogle Scholar
  8. Briant, N., Bancon-Montigny, C., Freydier, R., Delpoux, S., & Elbaz-Poulichet, F. (2016). Behaviour of butyltin compounds in the sediment pore waters of a contaminated marina (Port Camargue, South of France). Chemosphere, 150, 123–129.  https://doi.org/10.1016/j.chemosphere.2016.02.022.CrossRefGoogle Scholar
  9. Buggy, C. J., & Tobin, J. M. (2006). Seasonal and spatial distributions of tributyltin in surface sediment of the Tolka Estuary, Dublin, Ireland. Environmental Pollution, 143, 294–303.  https://doi.org/10.1016/j.envpol.2005.11.025.CrossRefGoogle Scholar
  10. Buhl-Mortensen, L. (1996). Amphipod fauna along offshore-fjord gradient. Journal of Natural History, 30, 23–49.  https://doi.org/10.1080/00222939600770031.CrossRefGoogle Scholar
  11. Carbone, M. E., Spetter, C. V., & Marcovecchio, J. E. (2016). Seasonal and spatial variability of macronutrients and chlorophyll a based on GIS in the South American estuary (Bahía Blanca, Argentina). Environmental Earth Sciences, 75.  https://doi.org/10.1007/s12665-016-5516-6.
  12. Cassi, R., Tolosa, I., & de Mora, S. (2008). A survey of antifoulants in sediments from Ports and Marinas along the French Mediterranean coast. Marine Pollution Bulletin, 16, 355–359.  https://doi.org/10.1002/aoc.315.CrossRefGoogle Scholar
  13. Castro, I. B., & Fillmann, G. (2012). High tributyltin and imposex levels in the commercial muricid Thais chocolata from two Peruvian harbor areas. Environmental Toxicology and Chemistry, 31, 955–960.  https://doi.org/10.1002/etc.1794.CrossRefGoogle Scholar
  14. Choi, M., Moon, H. B., Yu, J., Eom, J. Y., & Choi, H. G. (2010). Temporal trend of butyltins in seawater, sediments, and mussels from Busan Harbor of Korea between 2002 and 2007: tracking the effectiveness of tributylin regulation. Archives of Environmental Contamination and Toxicology, 58, 394–402.  https://doi.org/10.1007/s00244-009-9428-2.CrossRefGoogle Scholar
  15. Choi, J. Y., Hong, G. H., Ra, K., Kim, K. T., & Kim, K. (2014). Magnetic characteristics of sediment grains concurrently contaminated with TBT and metals near a shipyard in Busan, Korea. Marine Pollution Bulletin, 85, 679–685.  https://doi.org/10.1016/j.marpolbul.2014.03.029.CrossRefGoogle Scholar
  16. Cima, F., Craig, P. J., & Harrington, C. (2003). Organotin compounds in the environment. In P. J. Craig (Ed.), Organometallic compounds in the environment (pp. 101–149). John Wiley & Sons: Chichester.CrossRefGoogle Scholar
  17. Clark, E. A., Sterritt, R. M., & Lester, J. N. (1988). The fate of tributyltin in the aquatic environment. Environmental Science & Technology, 22, 600–604.CrossRefGoogle Scholar
  18. Cole, R. F., Mills, G. A., Hale, M. S., Parker, R., Bolam, T., Teasdale, P. R., Bennett, W. W., & Fones, G. R. (2018). Development and evaluation of a new diffusive gradients in thin-films technique for measuring organotin compounds in coastal sediment pore water. Talanta, 178, 670–678.  https://doi.org/10.1016/j.talanta.2017.09.081.CrossRefGoogle Scholar
  19. Commendatore, M. G., Franco, M. A., Gomes Costa, P., Castro, I. B., Fillmann, G., Bigatti, G., Esteves, J. L., & Nievas, M. L. (2015). BTs, PAHs, OCPs and PCBs in sediments and bivalve mollusks in a mid-latitude environment from the Patagonian coastal zone. Environmental Toxicology and Chemistry, 34, 2750–2763.  https://doi.org/10.1002/etc.3134.CrossRefGoogle Scholar
  20. Cruz, A., Anselmo, A. M., Suzuki, S., & Mendo, S. (2015). Tributyltin (TBT): a review on microbial resistance and degradation. Critical Reviews in Environmental Science and Technology, 45, 970–1006.  https://doi.org/10.1080/10643389.2014.924181.CrossRefGoogle Scholar
  21. Cuadrado, D. G., Carmona, N. B., & Bournod, C. (2011). Biostabilization of sediments by microbial mats in a temperate siliciclastic tidal flat, Bahia Blanca estuary (Argentina). Sedimentary Geology, 237, 95–101.  https://doi.org/10.1016/j.sedgeo.2011.02.008.CrossRefGoogle Scholar
  22. Cuadrado, D. G., Carmona, N. B., & Bournod, C. N. (2012). Mineral precipitation on modern siliciclastic tidal flats colonized by microbial mats. Sedimentary Geology, 271-272, 58–66.  https://doi.org/10.1016/j.sedgeo.2012.06.005.CrossRefGoogle Scholar
  23. de Castro, Í. B., Perina, F. C., & Fillmann, G. (2012). Organotin contamination in South American coastal areas. Environmental Monitoring and Assessment, 184, 1781–1799.  https://doi.org/10.1007/s10661-011-2078-7.CrossRefGoogle Scholar
  24. Dean, W. E. J. R. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology, 44, 242–248.Google Scholar
  25. Del Brio, F., Commendatore, M., Castro, I. B., Gomes Costa, P., Fillmann, G., & Bigatti, G. (2016). Distribution and bioaccumulation of butyltins in the edible gastropod Odontocymbiola magellanica. Marine Biology Research, 12, 608–620.  https://doi.org/10.1080/17451000.2016.1169296.CrossRefGoogle Scholar
  26. Delucchi, F., Narvarte, M. A., Amin, O., Tombesi, N. B., Freije, H., & Marcovecchio, J. (2011). Organotin compounds in sediments of three coastal environments from the Patagonian shore, Argentina. International Journal of Environment and Waste Management, 8, 3.  https://doi.org/10.1504/IJEWM.2011.040962.CrossRefGoogle Scholar
  27. Di Bonito, M., Breward, N., Crout, N., Smith, B., & Young, S. (2008). Overview of selected soil pore water extraction methods for the determination of potentially toxic elements in contaminated soils: operational and technical aspects. In B. De Vivo, H. E. Belkin, & A. Lima (Eds.), Environmental geochemistry: site characterization, data analysis and case histories (pp. 213–249). Elsevier: Amsterdam.CrossRefGoogle Scholar
  28. Diez, S., Abalos, M., & Bayona, J. M. (2002). Organotin contamination in sediments from the Western Mediterranean enclosures following 10 years of TBT regulation. Water Research, 36, 905–918.  https://doi.org/10.1016/S0043-1354(01)00305-0.
  29. Dominguez, L. A., Caldas, S. S., Primel, E. G., & Fillmann, G. (2014). The influence of salinity and matrix effect in the determination of antifouling biocides in estuarine waters of Patos Lagoon (southern Brazil). Journal of the Brazilian Chemical Society.  https://doi.org/10.5935/0103-5053.20140110.
  30. Dong, C. D., Chen, C. F., & Chen, C. W. (2015). Composition and source of butyltins in sediments of Kaohsiung Harbor, Taiwan. Estuarine, Coastal and Shelf Science, 156, 134–143.  https://doi.org/10.1016/j.ecss.2014.08.002.CrossRefGoogle Scholar
  31. Eberlein, K., & Kattner, G. (1987). Automatic method for determination of orthophosphate and total dissolved phosphorus in the marine environment. Fresenius’ Journal of Analytical Chemistry, 326, 354–357.  https://doi.org/10.1007/BF00469784.CrossRefGoogle Scholar
  32. Eurachem (1998) The fitness for purpose of analytical methods. A laboratory guide to method validation and related topics. LGC (Teddington) Ltd, London, p 75.Google Scholar
  33. Fang, L., Xu, C., Li, J., Borggaard, O. K., & Wang, D. (2017). The importance of environmental factors and matrices in the adsorption, desorption, and toxicity of butyltins: a review. Environmental Science and Pollution Research, 24, 9159–9173.  https://doi.org/10.1007/s11356-017-8449-z.CrossRefGoogle Scholar
  34. Fernández, E. M. (2017) Dinámica de nutrientes, material orgánica y clorofila a en planicies de marea cubiertas por matas microbianas. http://repositoriodigital.uns.edu.ar/handle/123456789/3601.
  35. Fernández, E. M., Spetter, C. V., Martinez, A. M., Cuadrado, D. G., Avena, M. J., & Marcovecchio, J. E. (2016). Carbohydrate production by microbial mats communities in tidal flat from Bahía Blanca Estuary (Argentina). Environmental Earth Sciences, 75(8), 641.  https://doi.org/10.1007/s12665-016-5405-z.
  36. Ferrer, L., Contardi, E., Andrade, S., Asteasuain, R., Pucci, A., & Marcovecchio, J. (2000). Environmental cadmium and lead concentrations in the Bahía Blanca estuary (Argentina). Potential toxic effects of Cd and Pb on crab larvae. Oceanologia, 43, 493–504.Google Scholar
  37. Filipkowska, A., Kowalewska, G., & Pavoni, B. (2014). Organotin compounds in surface sediments of the southern Baltic coastal zone: a study on the main factors for their accumulation and degradation. Environmental Science and Pollution Research, 21, 2077–2087.  https://doi.org/10.1007/s11356-013-2115-x.CrossRefGoogle Scholar
  38. Furdek, M., Vahčič, M., Ščančar, J., Milačič, R., Kniewald, G., & Mikac, N. (2012). Organotin compounds in seawater and Mytilus galloprovincialis mussels along the Croatian Adriatic Coast. Marine Pollution Bulletin, 64, 189–199.  https://doi.org/10.1016/j.marpolbul.2011.12.009.CrossRefGoogle Scholar
  39. Furdeck, M., Mikac, N., Bueno, M., Tessier, E., Cavalheiro, J., & Monperrus, M. (2016). Organotin persistence in contaminated marine sediments and porewaters: In situ degradation study using species-specific stable isotopic tracers. Journal of Hazardous Materials, 307, 263–273.  https://doi.org/10.1016/j.jhazmat.2015.12.037.CrossRefGoogle Scholar
  40. Gelós, E. M., Marcos, O. A., Spagnuolo, J. O., & Schillizzi, R. A. (2004). Textura y Mineralogía de los sedimentos. In M. C. Piccolo & M. Hoffmeyer (Eds.), Ecosistema del Estuario de Bahía Blanca (3rd ed., pp. 43–50). Bahía Blanca: Ediuns.Google Scholar
  41. Gómez, E. A., Cuadrado, D. G., & Federici, G. A. (2005). Environmental impact assessment in a harbour area, Argentina. Thalass, An international Journal of Marine Science, 21, 31–38.Google Scholar
  42. Gómez, N., Donato, J. C., Giorgi, A., Guasch, H., Mateo, P., & Sabater, S. (2009). La biota de los ríos: los microorganismos autótrofos. In A. Elosegi & S. Sabater (Eds.), Conceptos y Técnicas en Ecología Fluvial (pp. 234–236). España: Valant.Google Scholar
  43. Grasshoff, K. (1976). Filtration and storage. In Methods of seawater analysis (pp. 21–24). Weinheim: Verlag Chemie.Google Scholar
  44. Grasshoff, K., Erhardt, M., & Kremling, K. (1983). Methods of seawater analysis, 2nd Edition (pp. 365–366). Weinheim: Verlag-Chemie.Google Scholar
  45. Guinder, V. A., López-Abbate, M. C., Berasategui, A. A., Negrin, V. L., Zapperi, G., Pratolongo, P. D., Férnandez Severini, M. D., & Popovich, C. A. (2015). Influence of the winter phytoplankton bloom on the settled material in a temperate shallow estuary. Oceanologia, 57, 50–60.  https://doi.org/10.1016/j.oceano.2014.10.002.CrossRefGoogle Scholar
  46. Hoch, M. (2001). Organotin compounds in the environment—an overview. Applied Geochemistry, 16, 719–743.  https://doi.org/10.1016/S0883-2927(00)00067-6.CrossRefGoogle Scholar
  47. Hoch, M., & Schwesig, D. (2004). Parameters controlling the partitioning of tributyltin (TBT) in aquatic systems. Applied Geochemistry, 19, 323–334.  https://doi.org/10.1016/S0883-2927(03)00131-8.CrossRefGoogle Scholar
  48. Hoch, M., Alonso Azcarate, J., & Lischick, M. (2002). Adsorption behavior of toxic tributyltin to clayrich sediments under various environmental conditions. Environmental Toxicology and Chemistry, 21, 1390–1397.  https://doi.org/10.1002/etc.5620210709.CrossRefGoogle Scholar
  49. Hoch, M., Alonso-Azcarate, J., & Lischick, M. (2003). Assessment of adsorption behavior of dibutyltin (DBT) to clay-rich sediments in comparison to the highly toxic tributyltin (TBT). Environmental Pollution, 123, 217–227.  https://doi.org/10.1016/S0269-7491(02)00402-5.CrossRefGoogle Scholar
  50. Hongxia, L., Guolan, H., & Shugui, D. (1996). Transport of butyltins at the water-air interface and the adsorptive behavior of tributyltin in the surface microlayer. Toxicological & Environmental Chemistry, 55, 257–265.  https://doi.org/10.1080/02772249609358340.CrossRefGoogle Scholar
  51. Huang, J. H., & Matzner, E. (2004). Adsorption and desorption of organotin compounds in organic and mineral soils. European Journal of Soil Science, 55, 693–698.  https://doi.org/10.1111/j.1365-2389.2004.00634.x.CrossRefGoogle Scholar
  52. IMO, International Maritime Organization. (2005). Antifouling systems. International convention on the control of harmful antifouling systems on ships. London: International Maritime Organization.Google Scholar
  53. Iribarne, O., Martinetto, P., Schwindt, E., Botto, F., Bortolus, A., & Borboroglu, P. G. (2003). Evidences of habitat displacement between two common soft-bottom SW Atlantic intertidal crabs. Journal of Experimental Marine Biology and Ecology, 296, 167–182.  https://doi.org/10.1016/S0022-0981(03)00318-6.CrossRefGoogle Scholar
  54. IUPAC- International Union of Pure and Applied Chemistry. (2002). Analytical, applied, clinical, inorganic, and physical chemistry divisions interdivisional working party for harmonization of quality assurance schemes for analytical laboratories. Pure and Applied Chemistry, 74, 835–855.CrossRefGoogle Scholar
  55. Jin, J., Yang, L., Chan, S. M., Luan, T., Li, Y., & Tam, N. F. (2011). Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water. Journal of Hazardous Materials, 185, 1582–1586.  https://doi.org/10.1016/j.jhazmat.2010.09.075.CrossRefGoogle Scholar
  56. Kaspar, H. F. (1983). Denitrification, nitrate reduction to ammonium, and inoganic nitrogen pools in intetidal sediments. Marine Biology, 74(2), 133-139.  https://doi.org/10.1007/BF00413916
  57. Koroleff, F. (1969) Direct determination of ammonia in natural waters as indophenol blue. ICES C.M. 1969/C: 9. Hydrol Commun p. 4.Google Scholar
  58. La Colla, N. S., Botté, S. E., Oliva, A. L., & Marcovecchio, J. E. (2017). Tracing Cr, Pb, Fe and Mn occurrence in the Bahía Blanca estuary through commercial fish species. Chemosphere, 175, 286–293.  https://doi.org/10.1016/j.chemosphere.2017.02.002.CrossRefGoogle Scholar
  59. Laitano, M. V., Castro, Í. B., Costa, P. G., Fillmann, G., & Cledón, M. (2015). Butyltin and PAH contamination of Mar del Plata port (Argentina) sediments and their influence on adjacent coastal regions. Bulletin of Environmental Contamination and Toxicology, 95, 513–520.  https://doi.org/10.1007/s00128-015-1637-y.CrossRefGoogle Scholar
  60. López Abbate, M. C., Molinero, J. C., Guinder, V. A., Perillo, G. M., Freije, R. H., Sommer, U., Spetter, C. V., & Marcovecchio, J. E. (2017). Time-varying environmental control of phytoplankton in a changing estuarine system. Science of the Total Environment, 609, 1390–1400.  https://doi.org/10.1016/j.scitotenv.2017.08.002.CrossRefGoogle Scholar
  61. Lorenzen, C. J. (1967). Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography, 12, 343–346.  https://doi.org/10.4319/lo.1967.12.2.0343.CrossRefGoogle Scholar
  62. MacIntyre, H. L., Geider, R. J., & Miller, D. C. (1996). Microphytobenthos: the ecological role of “the secret garden” of unvegetated, shallow-water marine habitats. I: distribution, abundance and primary production. Estuaries and Coasts.  https://doi.org/10.2307/1352224.
  63. Marcic, C., Le Hecho, I., Denaix, L., & Lespes, G. (2006). TBT and TPhT persistence in a sludged soil. Chemosphere, 65, 2322–2332.  https://doi.org/10.1016/j.chemosphere.2006.05.007.CrossRefGoogle Scholar
  64. Martin, J. B., Hartl, K. M., Corbett, D. R., Swarzenski, P. W., & Cable, J. E. (2003). A multilevel pore-water sampler for permeable sediments. Journal of Sedimentary Research, 73, 128–132.  https://doi.org/10.1306/070802730128.CrossRefGoogle Scholar
  65. Martínez, M. L., Piol, M. N., Nudelman, N. S., & Guerrero, N. R. V. (2017). Tributyltin bioaccumulation and toxic effects in freshwater gastropods Pomacea canaliculata after a chronic exposure: field and laboratory studies. Ecotoxicology, 26, 691–701.  https://doi.org/10.1007/s10646-017-1801-8.CrossRefGoogle Scholar
  66. Michel, P., & Averty, B. (1999). Distribution and fate of tributyltin in surface and deep waters of the northwestern Mediterranean. Environmental Science & Technology, 33, 2524–2528.  https://doi.org/10.1021/es981254b.CrossRefGoogle Scholar
  67. Ogbomida, E. T., & Ezemonye, L. I. (2016). Tributyltin and its derivative in water samples of National Inland Water Way Authority Harbour of Warri, Delta State, Nigeria. Organic Chemistry Current Reserch.  https://doi.org/10.4172/2161-0401.1000158.
  68. Perillo, G. M. E., Piccolo, M. C., Parodi, E., & Freije, R. H. (2001). The Bahía Blanca Estuary, Argentina. In U. Seeliger & B. Kjerfve (Eds.), Coastal marine ecosystems of Latin America, ecological studies (pp. 205–217). Berlin: Springer.CrossRefGoogle Scholar
  69. Perillo, G. M. E., Piccolo, M. C., Palma, E. D., Pérez, D. E. & Pierini, J. O. (2007) Oceanografía física. In: M.C. Piccolo & M.S. Hoffmeyer (Eds.) Ecosistemas del estuario de Bahía Blanca (pp. 61-67). Bahía Blanca: ediUNS (ISBN 987-9281-96-9).Google Scholar
  70. Piccolo, M. C. & Diez, P. G. (2004). Meteorología del Puerto Coronel Rosales. In: M.C. Piccolo & M.S. Hoffmeyer (Eds). Ecosistema del Estuario de Bahía Blanca (pp. 87-91). Bahía Blanca: ediUNS (ISBN 987-9281-96-9).Google Scholar
  71. Piccolo, M. C., Perillo, G. M. E., & Melo, W. D. (2008). The Bahía Blanca Estuary: an integrated overview of its geomorphology and dynamics. In R. J. Neves, J. Baretta, & M. D. Mateus (Eds.), Perspectives on integrated coastal zone management in South America (pp. 221–232). Portugal: IST Press.Google Scholar
  72. Pinochet, H., Tessini, C., Bravo, M., Quiroz, W., & De Gregori, I. (2009). Butyltin compounds and their relation with organic matter in marine sediments from San Vicente Bay—Chile. Environmental Monitoring and Assessment, 155, 341–353.  https://doi.org/10.1007/s10661-008-0439-7.CrossRefGoogle Scholar
  73. Point, D., Monperrus, M., Tessier, E., Amouroux, D., Chauvaud, L., Thouzeau, G., & Clavier, J. (2007). Biological control of trace metal and organometal benthic fluxes in a eutrophic lagoon (Thau Lagoon, Mediterranean Sea, France). Estuarine, Coastal and Shelf Science.  https://doi.org/10.1016/j.ecss.2006.11.013.
  74. Pougnet, F., Schäfer, J., Dutruch, L., Garnier, C., Tessier, E., Dang, D. H., Lanceleur, L., Mullot, J. U., Lenoble, V., & Blanc, G. (2014). Sources and historical record of tin and butyl-tin species in a Mediterranean bay (Toulon Bay, France). Environmental Science and Pollution Research, 21, 6640–6651.  https://doi.org/10.1007/s11356-014-2576-6.CrossRefGoogle Scholar
  75. Quintas, P. Y., Oliva, A. L., Arias, A., Domini, C. E., Alvarez, M. B., Garrido, M., & Marcovecchio, J. E. (2016). Seasonal changes in organotin compounds in sediments from the Bahía Blanca Estuary. Environmental Earth Sciences.  https://doi.org/10.1007/s12665-016-5471-2.
  76. Quintas, P. Y., Arias, A. H., Oliva, A. L., Domini, C. E., Alvarez, M. B., Garrido, M., & Marcovecchio, J. E. (2017). Organotin compounds in Brachidontes rodriguezii mussels from the Bahía Blanca Estuary, Argentina. Ecotoxicology and environmental safety, 145, 518–527.  https://doi.org/10.1016/j.ecoenv.2017.07.052.CrossRefGoogle Scholar
  77. Ranke, J., & Jastorff, B. (2000). Multidimensional risk analysis of antifouling biocides. Environmental Science and Pollution Research, 7, 105–114.  https://doi.org/10.1065/espr199910.003.CrossRefGoogle Scholar
  78. Sabah, A., Bancon-Montigny, C., Rodier, C., Marchand, P., Delpoux, S., Ijjaali, M., & Tournou, M. G. (2016). Occurrence and removal of butyltin compounds in a waste stabilisation pond of a domestic waste water treatment plant of a rural French town. Chemosphere, 144, 2497–2506.  https://doi.org/10.1016/j.chemosphere.2015.11.006.CrossRefGoogle Scholar
  79. Sakultantimetha, A., Keenan, H. E., Beattie, T. K., Bangkedphol, S., & Cavoura, O. (2011a). Bioremediation of tributyltin contaminated sediment: degradation enhancement and improvement of bioavailability to promote treatment processes. Chemosphere, 83, 680–686.  https://doi.org/10.1016/j.chemosphere.2011.02.024.CrossRefGoogle Scholar
  80. Sakultantimetha, A., Keenan, H. E., Beattie, T. K., Bangkedphol, S., & Cavoura, O. (2011b). Effects of organic nutrients and growth factorson biostimulation of tributyltin removal by sediment microorganisms and Enterobacter cloacae. Applied Microbiology and Biotechnology, 90, 353–360.  https://doi.org/10.1007/s00253-010-3023-3.CrossRefGoogle Scholar
  81. Santisteban, J. I., Mediavilla, R., López-Pamo, E., Dabrio, C. J., Ruiz Zapata, M. B., Gil García, M. J., Castaño, S., & Martínez-Alfaro, P. E. (2004). Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? Journal of Paleolimnology, 32, 287–299.  https://doi.org/10.1023/B:JOPL.0000042999.30131.5b.CrossRefGoogle Scholar
  82. Santos, M. M., Vieira, N., Reis-Henriques, M. A., Santos, A. M., Gomez-Ariza, J. L., Giraldez, I., & Ten Hallers-Tjabbes, C. C. (2004). Imposex and butyltin contamination off the Oporto Coast (NW Portugal): a possible effect of the discharge of dredged material. Environment International, 30, 793–798.  https://doi.org/10.1016/j.envint.2004.01.005.CrossRefGoogle Scholar
  83. Severini, M. D. F., Botté, S. E., Hoffmeyer, M. S., & Marcovecchio, J. E. (2009). Spatial and temporal distribution of cadmium and copper in water and zooplankton in the Bahia Blanca estuary, Argentina. Estuarine, Coastal and Shelf Science, 85, 57–66.  https://doi.org/10.1016/j.ecss.2009.03.019.CrossRefGoogle Scholar
  84. Shue, M. F., Chen, T. C., Bellotindos, L. M., & Lu, M. C. (2014). Tributyltin distribution and producing androgenic activity in water, sediment, and fish muscle. Journal of Environmental Science and Health, 49, 432–438.  https://doi.org/10.1080/03601234.2014.894780.CrossRefGoogle Scholar
  85. Simpson, S. L., Batley, G. E., Chariton, A. A., Stauber, J. L., King, C. K., Chapman, J. C., et al. (2005). Handbook for sediments quality assessment. Bangor: CSIRO.Google Scholar
  86. Spetter, C. V., Buzzi, N. S., Fernández, E. M., Cuadrado, D. G., & Marcovecchio, J. E. (2015). Assessment of the physicochemical conditions sediments in a polluted tidal flat colonized by microbial mats in Bahía Blanca Estuary (Argentina). Marine Polluted Bulletin, 91, 491–505.  https://doi.org/10.1016/j.marpolbul.2014.10.008.CrossRefGoogle Scholar
  87. Strickland, J.D.H. & Parson, T.R. (1968) A practical handbook of seawater analysis. Fisheries Research Board of Canada: Bulletin 167.Google Scholar
  88. Tang, C. H., Hsu, C. H., & Wang, W. H. (2010). Butyltin accumulation in marine bivalves under field conditions in Taiwan. Marine Environmental Research, 70, 125–132.  https://doi.org/10.1016/j.marenvres.2010.03.011.CrossRefGoogle Scholar
  89. Technicon Autoanalyzer II®. (1973) Industrial Methods N° 186–72 W/B.Google Scholar
  90. Tessier, E., Amouroux, D., Morin, A., Christian, L., Thybaud, E., Vindimian, E., & Donard, O. F. (2007). (Tri) Butyltin biotic degradation rates and pathways in different compartments of a freshwater model ecosystem. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2007.08.047.
  91. Treguer, P. & Le Corre, P. (1975a) Analyse des sels nutritifs sur autoanalyzer II. Manuel D‟Analyse des Sels Nutritifs dans L‟Eau de Mer (pp. 11-22), France: Univ. Bretagne Occidentale.Google Scholar
  92. Treguer, P. & Le Corre, P. (1975b) Analyse des sels nutritifs sur autoanalyzer II. Manuel D‟Analyse des Sels Nutritifs dans L‟Eau de Mer, (pp. 34-49), France: Univ. Bretagne Occidentale.Google Scholar
  93. Tsnag, C. K., Lau, P. S., Tam, N. F. Y., & Wong, Y. S. (1999). Biodegradation capacity of tributyltin by two Chlorella species. Environmental Pollution, 105, 289–297.  https://doi.org/10.1016/S0269-7491(99)00047-0.CrossRefGoogle Scholar
  94. Vidal, J. M., Vega, A. B., Arrebola, F. J., González-Rodríguez, M. J., Sánchez, M. M., & Frenich, A. G. (2003). Trace determination of organotin compounds in water, sediment and mussel samples by low-pressure gas chromatography coupled to tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 17, 2099–2106.  https://doi.org/10.1002/rcm.1152.CrossRefGoogle Scholar
  95. Yonezawa, Y., Fukui, M., Yoshida, T., Ochi, A., Tanaka, T., Noguti, Y., Kowata, T., Sato, Y., Masunaga, S., & Urushigawa, Y. (1994). Degradation of tri-n-butyltin in Ise Bay sediment. Chemosphere, 29, 1349–1356.  https://doi.org/10.1016/0045-6535(94)90265-8.CrossRefGoogle Scholar
  96. Zapperi, G., Pratolongo, P., Piovan, M. J., & Marcovecchio, J. E. (2016). Benthic-Pelagic coupling in an intertidal mudflat in the Bahía Blanca Estuary (SW Atlantic). Journal of Coastal Research, 32(3), 629-637.  https://doi.org/10.2112/JCOASTRES-D-14-00064.1
  97. Zhang, C. N., Zhang, J. L., Huang, Y., Ren, H. T., Guan, S. H., & Zeng, Q. H. (2017). Dibutyltin depressed immune functions via NF-κB, and JAK/STAT signaling pathways in zebrafish (Danio rerio). Environmental Toxicology, 33, 104–111.  https://doi.org/10.1002/tox.22502.CrossRefGoogle Scholar
  98. ZS-ZF. (2007) Zona Franca Buenos Aires Sur S.A., Concesionaria de la Zona Franca Bahía Blanca - Coronel Rosales. http://www.zfzonasur.com.ar. Accessed April 2018.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto Argentino de Oceanografía (IADO)Universidad Nacional del Sur (UNS)-CONICETBahía BlancaArgentina
  2. 2.Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Instituto Interdisciplinario de Ciencias Básicas (ICB), UNCUYO – CONICET, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de CuyoMendozaArgentina
  3. 3.Departamento de QuímicaUniversidad Nacional del Sur (UNS)Bahia BlancaArgentina
  4. 4.Instituto de Química del Sur (INQUISUR)Universidad Nacional del Sur (UNS)-CONICETBahía BlancaArgentina

Personalised recommendations