Advertisement

Towards a multi-bioassay-based index for toxicity assessment of fluvial waters

  • Lalit K. Pandey
  • Isabelle Lavoie
  • Soizic Morin
  • Stephen Depuydt
  • Jie Lyu
  • Hojun Lee
  • Jinho Jung
  • Dong-Hyuk Yeom
  • Taejun Han
  • Jihae ParkEmail author
Article
  • 34 Downloads

Abstract

Despite their proven reliability for revealing ‘acceptable’ degrees of toxicity in waste- and reclaimed waters, bioassays are rarely used to assess the toxicity of hazardous contaminants present in natural waters. In this study, we used organisms from different trophic levels to assess the toxicity of water samples collected from four different South Korean rivers. The main objective was to develop a multi-descriptor index of toxicity for undiluted river water. The responses of six test organisms (Aliivibrio fischeri, Pseudokirchneriella subcapitata, Heterocypris incongruens, Moina macrocopa, Danio rerio and Lemna minor) after laboratory exposure to water samples were considered for this index, as well as the frequency of teratologies in diatom assemblages. Each individual test was attributed a toxicity class and score (three levels; no toxicity = 0, low toxicity = 1, confirmed toxicity = 2) based on the organism’s response after exposure and a total score was calculated. The proposed index also considers the number of test organisms that received the highest toxicity score (value = 2). An overall toxicity category was then attributed to the water sample based on those two metrics: A = no toxicity, B = slight toxicity, C = moderate toxicity; D = toxicity and E = high toxicity. The susceptibility of the test organisms varied greatly and the sensitivity of their response also differed among bioassays. The combined responses of organisms from different trophic levels and with different life strategies provided multi-level diagnostic information about the intensity and the nature of contamination.

Keywords

Aquatic plants Bioassay Biological indicators Microorganisms Multi-descriptor index Multiple endpoints Receiving water 

Notes

Acknowledgements

This work was partly supported by Post-Doctor Research Program (2016) through Incheon National University and Industrial Strategic Technology Development Program (Grant No. 10079956) funded by the Ministry of Trade, Industry & Energy. We are grateful to Dr. J.C. Taylor (North-West University, South Africa) for his generous donation of Pleurax and to Emilie Saulnier-Talbot for valuable comments on the manuscript and for English revision.

Supplementary material

10661_2019_7234_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 14.3 kb)

References

  1. Ahlf, W., Hollert, H., Neumann-Hensel, H., & Ricking, M. (2002). A guidance for the assessment and evaluation of sediment quality: a German approach based on ecotoxicological and chemical measurements. Journal of Soils and Sediments, 2, 37–42.CrossRefGoogle Scholar
  2. Angerville, R. (2009). Evaluation des risques écotoxicologiques liés au déversement de rejets urbains par temps de pluie (RUTP) dans les cours d’eau : application à une ville française et à une ville haïtienne. Chemical Sciences. INSA de Lyon, in French.Google Scholar
  3. Angerville, R., Perrodin, Y., Bazin, C., & Emmanuel, E. (2013). Evaluation of ecotoxicological risks related to the discharge of combined sewer overflows (CSOs) in a periurban river. International Journal of Environmental Research and Public Health, 10, 2670–2687.CrossRefGoogle Scholar
  4. Ankley, G. T., Schubauer-Berigan, M. K., & Hoke, R. A. (1992). Use of toxicity identification evaluation techniques to identify dredged material disposal options: a proposed approach. Environmental Management, 16, 1–6.CrossRefGoogle Scholar
  5. Arini, A., Feurtet-Mazel, A., Maury-Brachet, R., Pokrovsky, O. S., Coste, M., & Delmas, F. (2012). Recovery potential of periphytic biofilms translocated in artificial streams after industrial contamination (Cd and Zn). Ecotoxicology, 21, 1403–1414.CrossRefGoogle Scholar
  6. Backhaus, T., Froehner, K., Altenburger, R., & Grimme, L. H. (1997). Toxicity testing with Vibrio fischeri: a comparison between the long term (24 h) and the short term (30 min) bioassay. Chemosphere, 35, 2925–2938.CrossRefGoogle Scholar
  7. Becouze-Lareure, C., Thiebaud, L., Bazin, C., Namour, P., Breil, P., & Perrodin, Y. (2016). Dynamics of toxicity within different compartments of a peri-urban river subject to combined sewer overflow discharges. Science of the Total Environment, 539, 503–514.CrossRefGoogle Scholar
  8. Bresch, H. (1991). Early life-stage in zebrafish versus a growth test in rainbow trout to evaluate toxic effects. Bulletin of Environmental Contamination and Toxicology, 46, 641–648.CrossRefGoogle Scholar
  9. Calabrese, E. J. (2005). Paradigm lost, paradigm found: The re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environmental Pollution, 138, 378–411.CrossRefGoogle Scholar
  10. Canesi, L., & Corsi, I. (2016). Effects of nanomaterials on marine invertebrates. Science of the Total Environment, 565, 933–940.CrossRefGoogle Scholar
  11. Cerisier, A., Vedrenne, J., Lavoie, I., & Morin, S. (2018). Assessing the severity of diatom deformities using geometric morphometry. Botany Letters, 1–9.Google Scholar
  12. Chial, Z. B., & Persoone, G. (2002a). Cyst-based toxicity tests XII—development of a short chronic sediment toxicity test with the ostracod crustacean Heterocypris incongruens: selection of test parameters. Environmental Toxicology, 17, 520–527.CrossRefGoogle Scholar
  13. Chial, Z. B., & Persoone, G. (2002b). Cyst-based toxicity tests XIV—application of the ostracod solid-phase microbiotest for toxicity monitoring of river sediments in Flanders (Belgium). Environmental Toxicology, 17, 533–537.CrossRefGoogle Scholar
  14. Cho, E., Khim, J., Chung, S., Seo, D., & Son, Y. (2014). Occurrence of micropollutants in four major rivers in Korea. Science of the Total Environment, 491-492, 138–147.CrossRefGoogle Scholar
  15. Chu, K. W., & Chow, K. L. (2002). Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquatic Toxicology, 6, 53–64.CrossRefGoogle Scholar
  16. Coste, M., Boutry, S., Tison-Rosebery, J., & Delmas, F. (2009). Improvements of the Biological Diatom Index (BDI): description and efficiency of the new version (BDI-2006). Ecological Indicators, 9, 621–650.CrossRefGoogle Scholar
  17. Davis, J. A. (1981). Comparison of static-replacement and flow through bioassays using duckweed, Lemna gibba G3.EPA 560/6-81-003. Washington, DC: United States Environmental Protection Agency.Google Scholar
  18. Elendt, B.-P. (1990). Selenium deficiency in Crustacea; an ultrastructural approach to antennal damage in Daphnia magna Straus. Protoplasma, 154, 25–33.CrossRefGoogle Scholar
  19. Environment Canada. (1992). Biological test method: growth inhibition test using the freshwater alga Selenastrum capricornutum. Report EPS 1/RM/25. Ottawa: Environment Canada.Google Scholar
  20. Fulladosa, E., Murat, J. C., & Villaescusa, I. (2005). Effect of cadmium(II), chromium(VI), and arsenic(V) on long-term viability and growth-inhibition assays using Vibrio fischeri marine bacteria. Archives of Environmental Contamination and Toxicology, 49, 299–306.CrossRefGoogle Scholar
  21. Fulladosa, E., Murat, J. C., Bollinger, J. C., & Villaescusa, I. (2007). Adverse effects of organic arsenical compounds towards Vibrio fischeri bacteria. Science of the Total Environment, 377, 207–213.CrossRefGoogle Scholar
  22. Geiszinger, A., Bonnineau, C., Faggiano, L., Guasch, H., López-Doval, J. C., Proia, L., Ricart, M., Ricciardi, F., Romaní, A., Rotter, S., Muñoz, I., Schmitt-Jansen, M., & Sabater, S. (2009). The relevance of the community approach linking chemical and biological analyses in pollution assessment. Trends in Analytical Chemistry, 28, 619–626.CrossRefGoogle Scholar
  23. Gonzalez-Merchan, C., Perrodin, Y., Barraud, S., Sébastian, C., Becouze-Lareure, C., & Bazin, C. (2014a). Spatial variability of sediment ecotoxicity into a large storm water detention basin. Environmental Science and Pollution Research, 21, 5357–5366.CrossRefGoogle Scholar
  24. Gonzalez-Merchan, C., Perrodin, Y., Sébastian, C., Bazin, C., Winiarski, T., & Barraud, S. (2014b). Ecotoxicological characterization of sediments from storm water retention basins. Water Science and Technology, 69, 1045–1051.CrossRefGoogle Scholar
  25. Gopalapillai, Y., Vigneault, B., & Hale, B. A. (2014). Root length of aquatic plant, Lemna minor L., as an optimal toxicity endpoint for biomonitoring of mining effluents. Integrated Environmental Assessment and Management, 10, 493–497.CrossRefGoogle Scholar
  26. Hassan, I., Jabir, N. R., Ahmad, S., Shah, A., & Tabrez, S. (2015). Certain phase I and phase II enzymes as toxicity biomarker: an overview. Water, Air, and Soil Pollution, 226, 153.CrossRefGoogle Scholar
  27. Hsieh, C.-Y., Tsai, M.-H., Ryan, D. K., & Pancorbo, O. C. (2004). Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox chronic toxicity test. Science of the Total Environment, 320, 37–50.CrossRefGoogle Scholar
  28. Hwang, S.-J., Lee, S.-W., & Park, Y.-S. (2011). Ecological monitoring, assessment, and restoration of running waters in Korea. International Journal of Limnology: Annales de Limnologie, 47, S1–S2.CrossRefGoogle Scholar
  29. ISO. (2009). Water quality—determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test)—part1: method using freshly prepared bacteria. ISO 11348-1.Google Scholar
  30. ISO. (2012). Water quality—determination of fresh watersediment toxicity to Heterocypris incongruens (Crustacea, Ostracoda). ISO 14371.Google Scholar
  31. Ji, K., Kim, Y., Oh, S., Ahn, B., Jo, H., & Choi, K. (2008). Toxicity of Perfluorooctanoic acid on freshwater macro invertebrates (Daphnia magna and Moina macrocopa) and fish (Oryzia slatipes). Environmental Toxicology and Chemistry, 27, 2159–2168.CrossRefGoogle Scholar
  32. Joy, M. K., & Death, R. G. (2002). Predictive modelling of freshwater fish as a biomonitoring tool in New Zealand. Freshwater Biology, 47, 2261–2275.CrossRefGoogle Scholar
  33. Katsumata, M., Koike, T., Nishikawa, M., Kazumura, K., & Tsuchiya, H. (2006). Rapid ecotoxicological bioassay using delayed fluorescence in the green alga Pseudokirchneriella subcapitata. Water Research, 40, 3393–3400.CrossRefGoogle Scholar
  34. Kelly, M. (2013). Building capacity for ecological assessment using diatoms in UK rivers. Journal of Ecology and Environment, 36, 89–94.CrossRefGoogle Scholar
  35. Kim Tiam, S., Fauvelle, V., Morin, S., & Mazzella, N. (2016). Improving toxicity assessment of pesticide mixtures: the use of polar passive sampling devices extracts in microalgae toxicity tests. Frontiers in Microbiology, 7, 1388.CrossRefGoogle Scholar
  36. Kim, S. B., Kim, W. K., Chounlamany, V., Seo, J., Yoo, J., Jo, H. J., & Jung, J. (2012). Identification of multi-level toxicity of liquid crystal display wastewater toward Daphnia magna and Moina macrocopa. Journal of Hazardous Materials, 227–228, 327–333.CrossRefGoogle Scholar
  37. Kim, Y.-J., Han, Y.-S., Kim, E., Jung, J., Kim, S.-H., Yoo, S.-J., Shin, G.-S., Oh, J.-J., Park, A., Choi, H., Kim, M.-S., Brown, M. T., & Han, T. (2015). Application of the Ulva pertusa bioassay for a toxicity identification evaluation and reduction of effluent from a wastewater treatment plant. Frontiers in Environmental Science, 3, 1–9.CrossRefGoogle Scholar
  38. Lainé, M., Morin, S., & Tison-Rosebery, J. (2014). A multicompartment approach—diatoms, macrophytes, benthic macro-invertebrates and fish-to assess the impact of toxic industrial releases on a small French river. PLoS One, 9, e102358.CrossRefGoogle Scholar
  39. Lavoie, I., Campeau, S., Zugic-Drakulic, N., Winter, J. G., & Fortin, C. (2014). Using diatoms to monitor stream biological integrity in Eastern Canada: an overview of 10years of index development and ongoing challenges. Science of the Total Environment, 475, 187–200.CrossRefGoogle Scholar
  40. Lavoie, I., Hamilton, P., Morin, S., Kim Tiam, S., Gonçalves, S., Falasco, E., Fortin, C., Gontero, B., Heudre, D., Kahlert, M., Kojadinovic-Sirinelli, M., Manoylov, K., Pandey, L. K., & Taylor, J. (2017). Diatom teratologies as biomarkers of contamination: are all deformities ecologically meaningful? Ecological Indicators, 82, 539–550.CrossRefGoogle Scholar
  41. Lavoie, I., Lavoie, M., & Fortin, C. (2012). A mine of information: benthic algal communities as biomonitors of metal contamination from abandoned tailings. Science of the Total Environment, 425, 231–241.CrossRefGoogle Scholar
  42. Lento, J., Dillon, P. J., Somers, K. M., & Reid, R. A. (2008). Changes in littoral benthic macroinvertebrate communities in relation to water chemistry in 17 Precambrian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 65, 906–918.CrossRefGoogle Scholar
  43. Li, L., Zheng, B., & Liu, L. (2010). Biomonitoring and bioindicators used for river ecosystems: definitions, approaches and trends. Procedia Environmental Sciences, 2, 1510–1524.CrossRefGoogle Scholar
  44. Macken, A., Giltrap, M., Ryall, K., Foley, B., McGovern, E., McHugh, B., & Davoren, M. (2009). A test battery approach to the ecotoxicological evaluation of cadmium and copper employing a battery of marine bioassays. Ecotoxicology, 18, 470–480.CrossRefGoogle Scholar
  45. Mankiewicz-Boczek, J., Naɭecz-Jawecki, G., Drobniewska, A., Kaza, M., Sumorok, B., Izydorczyk, K., Zalewski, M., & Sawicki, J. (2008). Application of a microbiotests battery for complete toxicity assessment of rivers. Ecotoxicology and Environmental Safety, 71, 830–836.CrossRefGoogle Scholar
  46. Marzin, A., Archaimbault, V., Belliard, J., Chauvin, C., Delmas, F., & Pont, D. (2012). Ecological assessment of running waters: Do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures? Ecological Indicators 23,56–65.Google Scholar
  47. M.O.E. Korea. (2007). Toxicity identification of ecological risk hazards in the waste waters around the industrial complex from 2015. Osong: Ministry of Environment.Google Scholar
  48. Moreira-Santos, M., Soares, A. M. V. M., & Ribeiro, R. (2004). An in situ bioassay for freshwater environments with the microalga Pseudokirchneriella subcapitata. Ecotoxicology and Environmental Safety, 59, 164–173.CrossRefGoogle Scholar
  49. Morin, S., Duong, T. T., Dabrin, A., Coynel, A., Herlory, O., Baudrimont, M., Delmas, F., Durrieu, G., Schäfer, J., Winterton, P., Blanc, G., & Coste, M. (2008a). Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environmental Pollution, 151, 532–542.CrossRefGoogle Scholar
  50. Morin, S., Duong, T. T., Boutry, S., & Coste, M. (2008b). Mitigation of metal toxicity to freshwater biofilms development (Decazeville watershed, SW France). Cryptogamie Algologie, 29, 201–216.Google Scholar
  51. Morin, S., Cordonier, A., Lavoie, I., Arini, A., Blanco, S., Duong, T. T., Tornés, E., Bonet, B., Corcoll, N., Faggiano, L., Laviale, M., Pérès, F., Becares, E., Coste, M., Feurtet-Mazel, A., Fortin, C., Guasch, H., & Sabater, S. (2012). Consistency in diatom response to metal-contaminated environments. In H. Guasch, A. Ginebreda, & A. Geiszinger (Eds.), Emerging and priority pollutants in rivers (pp. 117–146). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  52. Nedeau, E. J., Merritt, R. W., & Kaufman, M. G. (2003). The effect of an industrial effluent on an urban stream benthic community: water quality vs. habitat quality. Environmental Pollution, 123, 1–13.CrossRefGoogle Scholar
  53. Nichols, H. W. (1973). Growth media. Freshwater. In J. R. Stein (Ed.), Handbook of phycological methods. Culture Methods and Growth measurements (pp. 7–24). London: Cambridge University Press.Google Scholar
  54. Niemirycz, E., Nichthauser, J., Staniszewska, M., Nałęcz-Jawecki, G., & Bolałek, J. (2007). The Microtox® biological test: application in toxicity evaluation of surface waters and sediments in Poland. Oceanological and Hydrobiological Studies, 36, 151–163.CrossRefGoogle Scholar
  55. Ntengwe, F. W., & Maseka, K. K. (2006). The impact of effluents containing zinc and nickel metals on stream and river waterbodies: the case of Chambishi and Mwambashi streams in Zambia. Physics and Chemistry of the Earth, 31, 814–820.CrossRefGoogle Scholar
  56. Oberdorff, T., Pont, D., Hugeny, B., & Porcher, J. P. (2002). Development and validation of a fish-based index (FBI) for the assessment of “river health” in France. Freshwater Biology, 47, 1720–1734.CrossRefGoogle Scholar
  57. OECD. (1984). Alga, growth inhibition test. In: OECD guideline for testing of chemicals, Vol. 201, Paris.Google Scholar
  58. OECD. (2012). Daphnia magna reproduction test. In: OECD guideline for the testing of chemicals, Vol. 211, Paris.Google Scholar
  59. OECD. (2013). Fish embryo acute toxicity (FET) test. In: OECD guidelines for the testing of chemicals, Vol. 236, Paris.Google Scholar
  60. Panda, S. K., & Upadhyay, R. K. (2003). Salt stress injury induces oxidative alteration and antioxidative defense in the roots of Lemna minor. Biologia Plantarum, 48, 249–253.CrossRefGoogle Scholar
  61. Pandard, P., Devillers, J., Charissou, A.-M., Poulsen, V., Jourdain, M.-J., Férard, J.-F., Grand, C., & Bispo, A. (2006). Selecting a battery of bioassays for ecotoxicological characterization of wastes. Science of the Total Environment, 363, 114–125.CrossRefGoogle Scholar
  62. Pandey, L. K., & Bergey, E. A. (2016). Exploring the status of motility, lipid bodies, deformities and size reduction in periphytic diatom community from chronically metal (Cu, Zn) polluted waterbodies as a biomonitoring tool. Science of the Total Environment, 550, 372–381.CrossRefGoogle Scholar
  63. Pandey, L. K., Han, T., & Gaur, J. P. (2015). Response of a phytoplanktonic assemblage to copper and zinc enrichment in microcosm. Ecotoxicology 24, 573–582.Google Scholar
  64. Pandey, L. K., Kumar, D., Yadav, A., Rai, J., & Gaur, J. P. (2014). Morphological abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal pollution in a river. Ecological Indicators, 36, 272–279.CrossRefGoogle Scholar
  65. Pandey, L. K., Lavoie, I., Morin, S., Park, J., Jie, L., Choi, S., Lee, H., & Han, T. (2018). River water quality assessment based on a multi-descriptor approach including chemistry, diatom assemblage structure, and non-taxonomical diatom metrics. Ecological Indicators, 84, 140–151.CrossRefGoogle Scholar
  66. Park, A., Kim, Y., Choi, E., Brown, M. T., & Han, T. (2013). A novel bioassay using root re-growth in Lemna. Aquatic Toxicology, 140–141, 415–424.CrossRefGoogle Scholar
  67. Park, J., Brown, M. T., Depuydt, S., Kim, J. K., Won, D.-S., & Han, T. (2017). Comparing the acute sensitivity of growth and photosynthetic endpoints in three Lemna species exposed to four herbicides. Environmental Pollution, 220, 818–827.CrossRefGoogle Scholar
  68. Parvez, S., Venkataraman, C., & Mukherji, S. (2006). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environment International, 32, 265–268.CrossRefGoogle Scholar
  69. Persoone, G., Marsalek, B., Blinova, I., Andrea Tӧrӧkne, A., Zarina, D., Manusadzianas, L., Nalecz-Jawecki, G., Tofan, L., Stepanova, N., Tothova, L., & Kolar, B. (2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environmental Toxicology, 18, 395–402.CrossRefGoogle Scholar
  70. Ponader, K. C., Charles, D. F., & Belton, T. J. (2007). Diatom-based TP and TN inference models and indices for monitoring nutrient enrichment of New Jersey streams. Ecological Indicators, 7, 79–93.CrossRefGoogle Scholar
  71. Radix, P., Léonard, M., Papantoniou, C., Roman, G., Saouter, E., Gallotti-Schmitt, S., Thiébaud, H., & Vasseur, P. (2000). Comparison of four chronic toxicity tests using algae, bacteria, and invertebrate sassessed with sixteen chemicals. Ecotoxicology and Environmental Safety, 47, 186–194.CrossRefGoogle Scholar
  72. Rodrigues, E. S., & Umbuzeiro, G. A. (2011). Integrating toxicity testing in the wastewater management of chemical storage terminals—a proposal based on a ten-year study. Journal of Hazardous Materials, 186, 1909–1915.CrossRefGoogle Scholar
  73. Reynoldson, R. H., Norris, V. H., Resh, K. E., Day, D. M., & Rosenberg, T. B. (1997). The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society, 16, 833–852.CrossRefGoogle Scholar
  74. Ruiz, F., Abad, M., Bodergat, A. M., Carbonel, P., Rodríguez-Lázaro, J., González-Regalado, M. L., Toscano, A., García, E. X., & Prenda, J. (2013). Freshwater ostracods as environmental tracers. International Journal of Environmental Science and Technology, 10, 1115–1128.CrossRefGoogle Scholar
  75. Sevilla, J. B., Nakajima, F., & Kasuga, I. (2014). Comparison of aquatic and dietary exposure of heavy metals Cd, Cu, and Zn to benthic ostracod Heterocypris incongruens. Environmental Toxicology and Chemistry, 33, 1624–1630.CrossRefGoogle Scholar
  76. Shen, K., Shen, C., Lu, Y., Tang, X., Zhang, C., Chen, X., Shi, J., Lin, Q., & Chen, Y. (2009). Hormesis response of marine and freshwater luminescent bacteria to metal exposure. Biological Research, 42, 183–187.CrossRefGoogle Scholar
  77. Şişman, T., İncekara, Ü., & Yıldız, Y. Ş. (2008). Determination of acute and early life stage toxicity of fat-plant effluent using zebrafish (Danio rerio). Environmental Toxicology, 23, 480–486.CrossRefGoogle Scholar
  78. Small, A. M., Adey, A. H., Lutz, S. M., Reese, E. G., & Roberts, D. L. (1996). A macrophyte-based rapid biosurvey of stream water quality: Restoration at the watershed scale. Restoration Ecology, 4, 124–145.CrossRefGoogle Scholar
  79. Steinberg, R. (1946). Mineral requirement of Lemna minor. Plant Physiology, 21, 42–48.CrossRefGoogle Scholar
  80. Tabrez, S., & Ahmad, M. (2012). Cytochrome P450 system as potential biomarkers of certain toxicants: comparison between plant and animal models. Environmental Monitoring and Assessment, 185(4), 2977–2987.CrossRefGoogle Scholar
  81. Tarkpea, M., & Hansson, M. (1989). Comparison between two Microtox test procedures. Ecotoxicology and Environmental Safety, 18, 204–210.CrossRefGoogle Scholar
  82. Thiebaut, G., Guérold, F., & Muller, S. (2002). Are trophic and diversity indices based on macrophyte communities pertinent tools to monitor water quality? Water Research, 36, 3602–3610.CrossRefGoogle Scholar
  83. Toumi, H., Burga-Perez, K. F., & Ferard, J.-F. (2015). Acute and chronic ecotoxicity of carbaryl with a battery of aquatic bioassays. Journal of Environmental Science and Health, Part B, 51, 57–62.CrossRefGoogle Scholar
  84. USEPA (United States Environmental Protection Agency). (1994). Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, EPA 600/7-91-002, Washington DC.Google Scholar
  85. Vincze, K., Graf, K., Scheil, V., Köhler, H., & Triebskorn, R. (2014). Embryotoxic and proteotoxic effects of water and sediment from the Neckar River (Southern Germany) to zebrafish (Danio rerio) embryos. Environmental Sciences Europe, 26, 1–13.CrossRefGoogle Scholar
  86. Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561.CrossRefGoogle Scholar
  87. Watanabe, H., Nakajima, F., Kasuga, I., & Furumai, H. (2008). Toxicity characterization of urban river sediments using bioassay with ostracod. Journal of Japan Society on Water Environment, 31, 671–676.CrossRefGoogle Scholar
  88. Watanabe, H., Nakajima, K., Kasuga, I., & Furumai, H. (2011). Toxicity evaluation of road dust in the runoff process using a benthic ostracod Heterocyprisincongruens. Science of the Total Environment, 409, 2366–2372.CrossRefGoogle Scholar
  89. Weyers, A., Sokull-Klüttgen, B., Baraibar-Fentanes, J., & Vollmer, G. (2000). Acute toxicity data: a comprehensive comparison of results of fish, Daphnia, and algae tests with new substances notified in the European Union. Environmental Toxicology and Chemistry, 19, 1931–1933.Google Scholar
  90. Wolska, L., Sagajdakow, A., Kuczyńska, A., & Namieśnik, J. (2007). Application of ecotoxicological studies in integrated environmental monitoring: possibilities and problems. Trends in Analytical Chemistry, 26, 332–344.CrossRefGoogle Scholar
  91. Yi, X., Kang, S. W., & Jung, J. (2010). Long-term evaluation of lethal and sublethal toxicity of industrial effluents using Daphnia magna and Moinamacrocopa. Journal of Hazardous Materials, 178, 982–987.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lalit K. Pandey
    • 1
    • 2
  • Isabelle Lavoie
    • 3
  • Soizic Morin
    • 4
  • Stephen Depuydt
    • 5
  • Jie Lyu
    • 6
  • Hojun Lee
    • 7
  • Jinho Jung
    • 8
  • Dong-Hyuk Yeom
    • 9
  • Taejun Han
    • 7
    • 10
  • Jihae Park
    • 5
    Email author
  1. 1.Institute of Green Environmental Research CenterIncheonSouth Korea
  2. 2.Department of Plant Science, Faculty of Applied SciencesMJP Rohilkhand UniversityBareillyIndia
  3. 3.Institut national de la recherche scientifique, centre Eau Terre EnvironnementQuébec CityCanada
  4. 4.Irstea, UR EABXCestas CedexFrance
  5. 5.Lab of Plant Growth AnalysisGhent University Global CampusIncheonRepublic of Korea
  6. 6.Department of Life SciencesJilin Normal UniversitySiping CityChina
  7. 7.Department of Marine SciencesIncheon National UniversityIncheonSouth Korea
  8. 8.Division of Environmental Science & Ecological EngineeringKorea UniversitySeoulSouth Korea
  9. 9.Ecotoxicology TeamKorea Institute of ToxicologyDaejeonSouth Korea
  10. 10.Ghent University Global CampusIncheonSouth Korea

Personalised recommendations