Advertisement

Ecosystem services in different agro-climatic zones in eastern India: impact of land use and land cover change

  • Rahul Tripathi
  • K. C. Moharana
  • A. D. Nayak
  • B. Dhal
  • Md Shahid
  • B. Mondal
  • S. D. Mohapatra
  • P. Bhattacharyya
  • Nuala Fitton
  • Pete Smith
  • A. K. Shukla
  • H. Pathak
  • A. K. NayakEmail author
Article
  • 107 Downloads

Abstract

Land use and land cover (LULC) change have considerable influence on ecosystem services. Assessing change in ecosystem services due to LULC change at different spatial and temporal scales will help to identify suitable management practices for sustaining ecosystem productivity and maintaining the ecological balance. The objective of this study was to investigate variations in ecosystem services in response to LULC change over 27 years in four agro-climatic zones (ACZ) of eastern India using satellite imagery for the year 1989, 1996, 2005, 2011 (Landsat TM) and 2016 (Landsat 8 OLI). The satellite images were classified into six LULC classes, agriculture land, forest, waterbody, wasteland, built-up, and mining area. During the study period (1989 to 2016), forest cover reduced by 5.2%, 13.7%, and 3.6% in Sambalpur, Keonjhar, and Kandhamal districts of Odisha, respectively. In Balasore, agricultural land reduced by 17.2% due to its conversion to built-up land. The value of ecosystem services per unit area followed the order of waterbodies > agricultural land > forests. A different set of indicators, e.g., by explicitly including diversity, could change the rank between these land uses, so the temporal trends within a land use are more important than the absolute values. Total ecosystem services increased by US$ 1296.4 × 105 (50.74%), US$ 1100.7 × 105 (98.52%), US$ 1867 × 105 (61.64%), and US$ 1242.6 × 105 (46.13%) for Sambalpur, Balasore, Kandhamal, and Keonjhar, respectively.

Keywords

Agro-climatic zone Ecosystem function Ecosystem service value Land-use and land-cover change 

Notes

Acknowledgments

Authors acknowledge the financial help provided by the Ministry of Earth Sciences, Government of India and also thank Director General, Indian Council of Agricultural Research (ICAR) and Director, ICAR-National Rice Research Institute (NRRI) for giving all the necessary help in executing the work. The help provided by officials of various departments of Odisha in carrying out the survey work is gratefully acknowledged. This study is a part of the project entitled “Delivering food security on limited land (DEVIL; Belmont Forum/FACCE-JPI via NERC: NE/M021327/1)”.

References

  1. Bag, K. (2015). Urban development in Western Odisha: a study on Burla town. IOSR J.Of Humanities and Social Science (IOSR-JHSS), 20(5), 97–101.Google Scholar
  2. Barman, N. K., Goutam, B., & Amrit, K. (2015). Estimation of fishery sector as a coastal resource zone to explore the associate problems and opportunity at Balasore coastal district, Odisha, India. International journal of Geomatics Geoscience, 6(3), 1696–1707.Google Scholar
  3. Bryan, B. A. (2013). Incentives, land use, and ecosystem services: synthesizing complex linkages. Environmental. Science Policy, 27, 124–134.CrossRefGoogle Scholar
  4. Census of India (2011) Household Schedule-Side A (PDF). Office of the Registrar General & Census Commissioner, Ministry of Home Affairs, Government of India. http://www.censusindia.gov.in/2011-common/census_2011.html.
  5. Costanza, R., d’Arge, R., de Groot, R., Farberk, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Suttonkk, P., & van den Belt, M. (1997). The value of the world's ecosystem services and natural capital. Nature, 387, 253–260.CrossRefGoogle Scholar
  6. Costanza, R., Kubiszewski, I., Giovannini, E., Lovins, H., McGlade, J., Pickett, K. E., Ragnarsdottir, K. V., Roberts, D., De Vogli, R., & Wilkinson, R. (2014). Time to leave GDP behind. Nature, 505, 283–285.CrossRefGoogle Scholar
  7. Dash, L.N. (2007). Economics of mining in Orissa. Orissa review, November-2007, 71–75.Google Scholar
  8. de Groot, R., Brander, L., Ploeg, S., Costanza, R., Bernard, F., Braat, L., Christie, M., Crossman, N., Ghermandi, A., Hein, L., Hussain, S., Kumar, P., McVittie, A., Portela, R., Rodriguez, L. C., Brink, P., & van Beukering, P. (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services, 1, 50–61.CrossRefGoogle Scholar
  9. de Groot, R. S., Alkemade, R., Braat, L., Hein, L., & Willemen, L. (2010). Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complex, 7, 260–272.CrossRefGoogle Scholar
  10. Dhillon, B. S., Kataria, P., & Dhillon, P. K. (2010). National food security vis-à-vis sustainability of agriculture in high crop productivity regions. Current Science, 98, 33–36.Google Scholar
  11. Directorate of Agriculture & Food Production (2014–15) Odisha agriculture statistics, 1–133.Google Scholar
  12. Directorate of agriculture and food production. Odisha agriculture statistics (2008–09) Government of Odisha, pp 1–102.Google Scholar
  13. Directorate of Economics and Statistics. Odisha Economic Survey. (2016–17), Planning and Convergence Department. Government of Odisha, pp 1–345.Google Scholar
  14. Directorate of Economics and Statistics: Agricultural Statistics at a Glance. (2016) Department of Agriculture, Cooperation & Farmers Welfare, Ministry of Agriculture & Farmers Welfare. Government of India, 1–488.Google Scholar
  15. Dubey, A., & Lal, R. (2009). Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA. Journal of Crop Improvement, 23(4), 332–350.  https://doi.org/10.1080/15427520902969906.CrossRefGoogle Scholar
  16. Elvidge, C.D., Sutton, P.C., & Wagner, T.W. et al. (2004). Urbanization. In: G. Gutman, A. Janetos, Justice C., et al., (Eds.), Land change science: observing, monitoring and understanding trajectories of change on the earth’s surface (Vol. 6), Springer Science & Business Media, Kluwer academic publishers, Netherlands, pp 315– 328.Google Scholar
  17. Fazal, S. (2000). Urban expansion and loss of agricultural land – a GIS based study of Saharanpur City, India. Environment and Urbanization, 12(2), 133–149.CrossRefGoogle Scholar
  18. Federation of Indian Chambers of Commerce and Industry (FICCI). (2016). A report on Indian agrochemical industry, 1–45.Google Scholar
  19. FSI (2015). Forest and tree resources in states and union territories. Forest survey of India, 108–288.Google Scholar
  20. Fu, B., Li, Y., Wang, Y., Zhang, B., Yin, S., Zhu, H., & Xing, Z. (2016). Evaluation of ecosystem service value of riparian zone using land use data from 1986 to 2012. Ecological Indicators, 69, 873–881.CrossRefGoogle Scholar
  21. Haines-Young, R., Potschin, M., & Kienast, F. (2012). Indicators of ecosystem service potential at European scales: mapping marginal changes and trade-offs. Ecological Indicators, 21, 39–53.CrossRefGoogle Scholar
  22. Hillier, J., Hawes, C., Squire, G., Hilton, A., Wale, S., & Smith, P. (2009). The carbon footprints of food crop production. Inter. J. Agric. Sustain., 7(2), 107–118.CrossRefGoogle Scholar
  23. IPCC (2007). Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 1–976.Google Scholar
  24. Isbell, F., Peter, B., Reich Tilman, D., Sarah, E., Hobbie Polasky, S., & Binder, S. (2013). Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. PNAS, 110(29), 11911–11916.CrossRefGoogle Scholar
  25. Jena, P. (2018). Climate change and its worst effect on coastal Odisha-an overview of its impact in Jagatsinghpur District. IOSR Journal of Humanities and Social Science (IOSR-JHSS), 23(2), 01–15.Google Scholar
  26. Kilic, S., Evrendilek, F., Berberoglu, S., & Demirkesen, A. C. (2006). Environmental monitoring of land-use and land-cover changes in a Mediterranean region of Turkey. Environmental Monitoring and Assessment., 114(1–3), 157–168.CrossRefGoogle Scholar
  27. Kindu, M., Schneider, T., Teketay, D., & Knoke, T. (2016). Changes of ecosystem service values in response to land use/land cover dynamics in Munessa–Shashemene landscape of the Ethiopian highlands. Science of Total Environment, 547, 137–147.CrossRefGoogle Scholar
  28. Kreuter, U. P., Harris, H. G., Matlock, M. D., & Lacey, R. E. (2001). Change in ecosystem service values in the San Antonio area, Texas. Ecological Economics, 39, 333–346.CrossRefGoogle Scholar
  29. Li, F., Ye, Y. P., Song, B. W., Wang, R. S., & Tao, Y. (2014). Assessing the changes in land use and ecosystem services in Changzhou municipality, Peoples’ Republic of China, 1991–2006. Ecological Indicators, 42, 95–103.CrossRefGoogle Scholar
  30. Li, Y., Feng, Y., Guo, X., & Peng, F. (2017). Changes in coastal city ecosystem service values based on land use—A case study of Yingkou, China. Land Use Policy, 65, 287–293.CrossRefGoogle Scholar
  31. Liu, Y., Li, J., & Zhang, H. (2012). An ecosystem service valuation of land use change in Taiyuan City, China. Ecological Modelling, 225, 127–132.CrossRefGoogle Scholar
  32. Long, H. L., Liu, Y. Q., Hou, X. G., Li, T. T., & Li, Y. R. (2014). Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat International, 44, 536–544.CrossRefGoogle Scholar
  33. Meshesha, D. T., Tsunekawa, A., Tsubo, M., Ali, S. A., & Haregeweyn, N. (2014). Land-use change and its socio-environmental impact in eastern Ethiopia's highland. Regional Environmental. Change, 14(2), 757–768.CrossRefGoogle Scholar
  34. Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: a framework for assessment. Washington: Island Press.Google Scholar
  35. MSME (Ministry of Small and Medium Enterprises) report (2016–17). Brief Industrial Profile of Balasore District, Government of India. Pp1–19.http://dcmsme.gov.in/dips/2016-17/BIPS%20Balasore%202016-17.pdf. Accessed 28th June 2016. 
  36. Mohanty, T. (2016). An economic analysis of adoption and spread of mechanical rice Transplanter in Odisha, Doctoral dissertation.Krishikosh, pp 1–85. http://krishikosh.egranth.ac.in/handle/1/97319
  37. National Remote Sensing Centre report Wasteland atlas of India (2011). http://dolr.gov.in/sites/default/files/Wastelands_Atlas_2011.pdf
  38. Panigrahy, S., Upadhyay, G., Ray, S. S., & Parihar, J. S. (2010). Mapping of cropping system for the Indo-Gangetic plain using multi-date SPOT NDVI-VGT data. Journal of Indian Society of Remote Sensing., 38(4), 627–632.CrossRefGoogle Scholar
  39. Patra, H.S., Mishra, B.K., Sahu, B., Dash, P., & Mohapatra, P.P. (2008). Impact of mining in scheduled area of Orissa: a case study from Keonjhar. Environment and Development Team report, Vasundhara, Sahid Nagar, Bhubaneswar, Odisha, India. https://www.vasundharaodisha.org/Research%20Reports/Impact%20of%20Mining%20in%20Schduled%20Area%20of%20Orissa.pdf
  40. Patra, H. S., & Sethy, K. M. (2014). Assessment of impact of opencast mine on surrounding forest: a case study from Keonjhar district of Odisha, India. Journal of Environmental Research And Development, 9(1), 249–254.Google Scholar
  41. Patra, P. (2015). Trends in farm mechanization in Odisha and its impact on cost of cultivation with special reference to combine harvester and rice transplanter. (Doctoral dissertation), Krishikosh.http://krishikosh.egranth.ac.in/handle/1/97161
  42. Punia, M., Joshi, P. K., & Porwal, M. C. (2011). Decision tree classification of land use land cover for Delhi, India using IRS-P6 AWiFS data. Expert Systems with Applications, 38, 5577–5583.CrossRefGoogle Scholar
  43. Raje, D., & Mujumdar, P. P. (2010). Reservoir performance under uncertainty in hydrologic impacts of climate change. Advances Water Resources, 33, 312–326.CrossRefGoogle Scholar
  44. Ranjan, R., & Upadhyay, V. P. (1999). Ecological problems due to shifting cultivation. Current Science, 77(10), 1246–1250.Google Scholar
  45. Satterthwaite, D., McGranahan, G., & Cecilia, T. (2010). Urbanization and its implications for food and farming. Philoshophical Transactions of Royal. Society, 365, 2809–2820.CrossRefGoogle Scholar
  46. Si, J., Nasiri, F., Han, P., & Li, T. (2014). Variation in ecosystem service values in response to land use changes in Zhifanggou watershed of loess plateau: A comparative study. Environmental Systems Research, 3, 2.  https://doi.org/10.1186/2193-2697-3-2.CrossRefGoogle Scholar
  47. Song, W., Deng, X. Z., Yuan, Y. W., Wang, Z., & Li, Z. H. (2015). Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain. Ecological Modelling, 318, 245–253.CrossRefGoogle Scholar
  48. Su, S. L., Li, D. L., Hu, Y. N., Xiao, R., & Zhang, Y. (2014). Spatially non-stationary response of ecosystem service value changes to urbanization in Shanghai, China. Ecological Indicators, 45, 332–339.CrossRefGoogle Scholar
  49. Xie, G. D., Lu, C. X., Leng, Y. F., Zheng, D., & Li, S. C. (2003). Ecological assets valuation of the Tibetan Plateau. Journal of Natural Resources, 18(2), 189–195.Google Scholar
  50. Yan, M., Luo, T., Bian, R., Cheng, K., Pan, G., & Rees, R. (2015). A comparative study on carbon footprint of rice production between household and aggregated farms from Jiangxi, China. Environmental Monitoring and Assessment, 187(6), 332,  https://doi.org/10.1007/s10661-015-4572-9.
  51. Yoshida, A., H. Chanhda, Ye, Yan-Mei. & Liang, Yue-Rong. (2010). Ecosystem service values and land use change in the opium poppy cultivation region in Northern Part of Lao PDR. Acta Ecologica Sinica, 30, 56–61.Google Scholar
  52. Zhang, Y., Zhao, L., Liu, J., Liu, Y., & Li, C. (2015). The impact of land cover change on ecosystem service values in urban agglomerations along the coast of the Bohai rim, China. Sustainability, 7, 10365–10387.CrossRefGoogle Scholar
  53. Zhao, B., Kreuter, U., Bo, L., Chen, Z. J., & Nobukazu, N. (2004). An ecosystem service value assessment of land-use change on Chongming Island, China. Land Use Policy, 21, 139–148.CrossRefGoogle Scholar
  54. Zhou, J., Sun, L., Zang, S. Y., Wang, K., Zhao, J. Y., Li, Z. X., Liu, X. M., & Liu, X. R. (2017). Effects of the land use change on ecosystem service value. Global Journal of Environmental Science and Management, 3(2), 121–130.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rahul Tripathi
    • 1
  • K. C. Moharana
    • 1
  • A. D. Nayak
    • 1
  • B. Dhal
    • 1
  • Md Shahid
    • 1
  • B. Mondal
    • 1
  • S. D. Mohapatra
    • 1
  • P. Bhattacharyya
    • 1
  • Nuala Fitton
    • 2
  • Pete Smith
    • 2
  • A. K. Shukla
    • 3
  • H. Pathak
    • 1
  • A. K. Nayak
    • 1
    Email author
  1. 1.ICAR - National Rice Research InstituteCuttackIndia
  2. 2.Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
  3. 3.ICAR-Indian Institute of Soil SciencesBhopalIndia

Personalised recommendations