Advertisement

Health risk assessment of arsenic and other potentially toxic elements in drinking water from an industrial zone of Gujrat, Pakistan: a case study

  • Noshin Masood
  • Abida FarooqiEmail author
  • Mazhar Iqbal Zafar
Article
  • 27 Downloads

Abstract

Present study aimed to provide a baseline data on arsenic (As) and other potentially toxic element (PTEs; Cd, Cr, Cu, Ni, and Pb) contamination in groundwater and soils (surface and sub-surface) from an industrial area of district Gujrat, Pakistan. Statistical parameters, principal component analysis-multiple linear regression (PCA-MLR), and health risk assessment model were used to elaborate the interrelations, source contributor, and associated health risks. This study revealed that the concentrations of Cd, Cr, Cu, and Pb in drinking water were within the permissible limits of the World Health Organization (WHO). However, As and Ni concentrations exceeded the WHO limits of 10 μg/L for As and 0.07 mg/L for Ni. In soils, the concentration of Cr was within permissible limits, whereas As, Cd, Cu, Ni, and Pb exceeded the prescribed values. Solid waste and industrial effluents from the area also contained high levels of As, Cd, Cr, Cu, Ni, and Pb. Calculated health index of As and other PTEs for industrial site and control area was less than 1 which indicated that the groundwater was assumed to be safe for drinking. High contamination of As (15 mg/kg) and other PTEs (Pb was 978, Cr 51, Cu 111, Cd 68, and Ni was 90 mg/kg, respectively) in upper soil could be due to the discharge of industrial effluent prior to the treatment, which signifies the industrial contribution towards As and heavy metal contamination. It can be concluded that critical examination of soil profile affinity to the respective, industrial waste pollutants can reduce the health risks to the local community. This trend not only reveals the geochemistry of the area but also useful for developing a link to access health risk and associated remediation processes.

Keywords

Arsenic Heavy metals Groundwater monitoring Soil assessment PCA-MLR receptor model Health risk 

Notes

References

  1. Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N. K., Khan, M. I., & Hussain, M. (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health, 15(1), 59.CrossRefGoogle Scholar
  2. Ahmed, G., Miah, M. A., Anawar, H. M., Chowdhury, D. A., & Ahmad, J. U. (2012). Influence of multi-industrial activities on trace metal contamination: an approach towards surface water body in the vicinity of Dhaka Export Processing Zone (DEPZ). Environmental Monitoring and Assessment, 184(7), 4181–4190.CrossRefGoogle Scholar
  3. Ajmal, M., Mohammad, A., Yousuf, R., & Ahmad, A. (1998). Adsorption behaviour of cadmium, zinc, nickel and lead from aqueous solutions by Mangifera indica seed shell. Indian Journal of Environmental Health, 40(1), 15–26.Google Scholar
  4. Alam, N., & Olsthoorn, T. N. (2014). Punjab scavenger wells for sustainable additional groundwater irrigation. Agricultural Water Management, 138, 55–67.CrossRefGoogle Scholar
  5. Anawar, H. M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., & Kato, K. (2003). Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. Journal of Geochemical Exploration, 77(2), 109–131.CrossRefGoogle Scholar
  6. APHA. (1992). American Public Health Association. Standards methods for the examination of water and wastewater. 18th Ed. Washington, D.C.Google Scholar
  7. Azizullah, A., Khattak, M. N. K., Richter, P., & Hader, D. P. (2011). Water pollution in Pakistan and its impact on public health—a review. Environment International, 37(2), 479–497.CrossRefGoogle Scholar
  8. Bhattacharjee, S., Mitra, P., & Ghosh, S. K. (2014). Spatial interpolation to predict missing attributes in GIS using semantic kriging. IEEE Transactions on Geoscience and Remote Sensing, 52(8), 4771–4780.CrossRefGoogle Scholar
  9. Brown, K. G., & Ross, G. L. (2002). Arsenic, drinking water, and health: a position paper of the American Council on Science and Health. Regulatory Toxicology and Pharmacology, 36(2), 162–174.CrossRefGoogle Scholar
  10. Burgess, W. G., & Pinto, L. (2005). Preliminary observations on the release of arsenic to groundwater in the presence of hydrocarbon contaminants in UK aquifers. Mineralogical Magazine, 69(5), 887–896.CrossRefGoogle Scholar
  11. Cai, L., Xu, Z., Bao, P., He, M., Dou, L., Chen, L., Zhu, Y. G., et al. (2015). Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 148, 189–195.CrossRefGoogle Scholar
  12. Chanpiwat, P., Sthiannopkao, S., Cho, K. H., Kim, K.-W., San, V., Suvanthong, B., & Vongthavady, C. (2011). Contamination by arsenic and other trace elements of tube-well water along the Mekong River in Lao PDR. Environmental Pollution, 159(2), 567–576.CrossRefGoogle Scholar
  13. Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., Fan, K. K., Yu, K., Wu, X., & Tian, Q. Z. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4), 542–551.CrossRefGoogle Scholar
  14. Chen, B. D., Zhu, Y. G., & Smith, F. A. (2006). Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere, 62(9), 1464–1473.CrossRefGoogle Scholar
  15. Coudert, L., Blais, J. F., Mercier, G., Cooper, P., Gastonguay, L., Morris, P., Reynier, N., et al. (2013). Pilot-scale investigation of the robustness and efficiency of a copper-based treated wood wastes recycling process. Journal of Hazardous Materials, 261, 277–285.CrossRefGoogle Scholar
  16. Del Mastro, A. M., Pereyra, M., Londonio, A., Pereyra, V., Rebagliati, R. J., Dawidowski, L., Smichowski, P., et al. (2014). Chemical profile of size-fractionated soils collected in a semiarid industrial area of Argentina. Atmospheric Environment, 98, 299–307.CrossRefGoogle Scholar
  17. Essa, M. A., & Farragallah, M. E. A. A. (2006). Clay minerals and their interactions with heavy metals and microbes of soils irrigated by various water resources at Assiut, Egypt. Assiut University Bulletin for Environmental Researches, 9(2), 73–90.Google Scholar
  18. Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114(3), 313–324.CrossRefGoogle Scholar
  19. Farooqi, A. (2015). Status of As and F− groundwater and soil pollution in Pakistan. In Arsenic and fluoride contamination (pp. 21–33). New Delhi: Springer.CrossRefGoogle Scholar
  20. Farooqi, A., Masuda, H., Firdous, N., 2007. Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environmental Pollution 145, 839–849.Google Scholar
  21. Gee, G. W., & Or, D. (2002). 2.4 Particle-size analysis. Methods of soil analysis. Utah State University Logan, Utah, Part 4(598), 255–293.Google Scholar
  22. Gilani, S. R., Mahmood, Z., Hussain, M., Baig, Y., Abbas, Z., & Batool, S. (2013). A study of drinking water of industrial area of Sheikhupura with special concern to arsenic, manganese and chromium. Pakistan Journal of Engineering, & Applied Science, 13, 118–126.Google Scholar
  23. Guerra, F., Trevizam, A. R., Muraoka, T., Marcante, N. C., & Canniatti-Brazaca, S. G. (2012). Heavy metals in vegetables and potential risk for human health. Scientia Agricola, 69(1), 54–60.CrossRefGoogle Scholar
  24. Henden, E., Cataloglu, R., & Aksuner, N. (2011). Determination of arsenic leaching from glazed and non-glazed Turkish traditional earthenware. Science of the Total Environment, 409(15), 2993–2996.CrossRefGoogle Scholar
  25. Ilyas, A., & Sarwar, T. (2003). Study of trace elements in drinking water in the vicinity of Palosi drain, Peshawar. Pakistan Journal of Biological Sciences, 6(1), 86–91.CrossRefGoogle Scholar
  26. Islam, F. S., Gault, A. G., Boothman, C., Polya, D. A., Charnock, J. M., Chatterjee, D., & Lloyd, J. R. (2004). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430(6995), 68–71.CrossRefGoogle Scholar
  27. Jadeja, R. N., & Tewari, A. (2007). Effect of soda ash industry effluent on bioaccumulation of metals by seaweeds of coastal region of Gujarat, India. Journal of Hazardous Materials, 147(1), 148–154.CrossRefGoogle Scholar
  28. Janin, A., Coudert, L., Riche, P., Mercier, G., Cooper, P., & Blais, J. F. (2011). Application of a CCA-treated wood waste decontamination process to other copper-based preservative-treated wood after disposal. Journal of Hazardous Materials, 186(2), 1880–1887.CrossRefGoogle Scholar
  29. Kabir, E., Ray, S., Kim, K. H., Yoon, H. O., Jeon, E. C., Kim, Y. S., Brown, R. J., et al. (2012). Current status of trace metal pollution in soils affected by industrial activities. The Scientific World Journal, 2012, 1–18.CrossRefGoogle Scholar
  30. Kisku, G. C., Barman, S. C., & Bhargava, S. K. (2000). Contamination of soil and plants with potentially toxic elements irrigated with mixed industrial effluent and its impact on the environment. Water, Air, and Soil Pollution, 120(1–2), 121–137.CrossRefGoogle Scholar
  31. Lamm, S. H., Robbins, S., Chen, R., Lu, J., Goodrich, B., & Feinleib, M. (2014). Discontinuity in the cancer slope factor as it passes from high to low exposure levels–arsenic in the BFD-endemic area. Toxicology, 326, 25–35.CrossRefGoogle Scholar
  32. Lee, S. W., Lee, B. T., Kim, J. Y., Kim, K. W., & Lee, J. S. (2006). Human risk assessment for heavy metals and as contamination in the abandoned metal mine areas, Korea. Environmental Monitoring and Assessment, 119(1–3), 233–244.CrossRefGoogle Scholar
  33. Lokeshwari, H., & Chandrappa, G. T. (2006). Impact of heavy metal contamination of Bellandur Lake on soil and cultivated vegetation. Current Science, 622–627.Google Scholar
  34. Lombi, E., Sletten, R. S., & Wenzel, W. W. (2000). Sequentially extracted arsenic from different size fractions of contaminated soils. Water, Air, and Soil Pollution, 124(3–4), 319–332.CrossRefGoogle Scholar
  35. Lyon F. (2014) IARC monographs on the evaluation of carcinogenic risks to humans. World health organization, International agency for research on cancer. availble at publication@iarc.fr.Google Scholar
  36. Malik, A., & Jaiswal, R. (2000). Metal resistance in Pseudomonas strains isolated from soil treated with industrial wastewater. World Journal of Microbiology and Biotechnology, 16(2), 177–182.CrossRefGoogle Scholar
  37. Manzoor, S., Shah, M. H., Shaheen, N., Khalique, A., & Jaffar, M. (2006). Multivariate analysis of trace metals in textile effluents in relation to soil and groundwater. Journal of Hazardous Materials, 137(1), 31–37.CrossRefGoogle Scholar
  38. Mazumder, D. N. G., Haque, R., Ghosh, N., De Binay, K., Santra, A., Chakraborti, D., & Smith, A. H. (2000). Arsenic in drinking water and the prevalence of respiratory effects in West Bengal, India. International Journal of Epidemiology, 29(6), 1047–1052.CrossRefGoogle Scholar
  39. Moor, C., Lymberopoulou, T., & Dietrich, V. J. (2001). Determination of heavy metals in soils, sediments and geological materials by ICP-AES and ICP-MS. Microchimica Acta, 136(3–4), 123–128.CrossRefGoogle Scholar
  40. Muhammad, S., Shah, M. T., & Khan, S. (2011). Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchemical Journal, 98(2), 334–343.CrossRefGoogle Scholar
  41. Mukesh, M., & Zeenat, K. (2001). Content of metals in drinking water of Hyderabad. Pakistan Journal of Analytical Chemistry, 2, 2–34.Google Scholar
  42. Mukherjee, S. C., Rahman, M. M., Chowdhury, U. K., Sengupta, M. K., Lodh, D., Chanda, C. R., Chakraborti, D., et al. (2003). Neuropathy in arsenic toxicity from groundwater arsenic contamination in West Bengal, India. Journal of Environmental Science and Health, Part A, 38(1), 165–183.CrossRefGoogle Scholar
  43. Muwanga, A., & Barifaijo, E. (2006). Impact of industrial activities on heavy metal loading and their physico-chemical effects on wetlands of Lake Victoria basin (Uganda). African Journal of Science and Technology, 7(1).Google Scholar
  44. Nickson, R., McArthur, J., Shrestha, B., Kyaw-Myint, T., & Lowry, D. (2005). Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Applied Geochemistry, 20(1), 55–68.CrossRefGoogle Scholar
  45. Noori, R., Sabahi, M. S., Karbassi, A. R., Baghvand, A., & Zadeh, H. T. (2010). Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination, 260(1), 129–136.CrossRefGoogle Scholar
  46. Ozturk, D., & Kilic, F. (2016). Geostatistical approach for spatial interpolation of meteorological data. Anais da Academia Brasileira de Ciências, 88(4), 2121–2136.CrossRefGoogle Scholar
  47. Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., & Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. The International Journal of Biochemistry & Cell Biology, 41(8–9), 1665–1677.CrossRefGoogle Scholar
  48. Phan, K., Sthiannopkao, S., Kim, K. W., Wong, M. H., Sao, V., Hashim, J. H., Mohamed Yasin, M. S., & Aljunid, S. M. (2010). Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Research, 44(19), 5777–5788.CrossRefGoogle Scholar
  49. Qazi, M. A., Khattak, M. A., Khan, M. S. A., Chaudhry, M. N., Mahmood, K., Akhter, B., Ali, U. A., et al. (2016). Spatial distribution of heavy metals in ground water of Sheikhupura district Punjab, Pakistan. Journal of Agricultural Research (Pakistan).Google Scholar
  50. Qurat-ul-Ain, Farooqi, A., Sultana, J., & Masood, N. (2017). Arsenic and fluoride co-contamination in shallow aquifers from agricultural suburbs and an industrial area of Punjab, Pakistan: spatial trends, sources and human health implications. Toxicology and Industrial Health, 33(8), 655–672.CrossRefGoogle Scholar
  51. Rahman, S. H., Khanam, D., Adyel, T. M., Islam, M. S., Ahsan, M. A., & Akbor, M. A. (2012). Assessment of heavy metal contamination of agricultural soil around Dhaka Export Processing Zone (DEPZ), Bangladesh: implication of seasonal variation and indices. Applied Sciences, 2(3), 584–601.CrossRefGoogle Scholar
  52. Rasool, A., Farooqi, A., Masood, S., & Hussain, K. (2016). Arsenic in groundwater and its health risk assessment in drinking water of Mailsi, Punjab, Pakistan. Human and Ecological Risk Assessment: An International Journal, 22(1), 187–202.CrossRefGoogle Scholar
  53. Sappa, G., Ergul, S., & Ferranti, F. (2014). Geochemical modeling and multivariate statistical evaluation of trace elements in arsenic contaminated groundwater systems of Viterbo Area,(Central Italy). SpringerPlus, 3(1), 237.CrossRefGoogle Scholar
  54. Sarkar, D., Makris, K. C., Parra-Noonan, M. T., & Datta, R. (2007). Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Environment International, 33(2), 164–169.CrossRefGoogle Scholar
  55. Satarug, S., Vesey, D. A., & Gobe, G. C. (2017). Current health risk assessment practice for dietary cadmium: data from different countries. Food and Chemical Toxicology, 106, 430–445.CrossRefGoogle Scholar
  56. Sekhar, K. C., Chary, N., Kamala, C., Rao, J. V., Balaram, V., & Anjaneyulu, Y. (2003). Risk assessment and pathway study of arsenic in industrially contaminated sites of Hyderabad: a case study. Environment International, 29(5), 601–611.CrossRefGoogle Scholar
  57. Shahid, M., Khalid, M., Dumat, C., Khalid, S., Niazi, N. K., Imran, M., & Tabassum, R. A. (2017). Arsenic level and risk assessment of groundwater in Vehari, Punjab Province, Pakistan. Exposure and Health, 1–11.Google Scholar
  58. Shakoor, M. B., Niazi, N. K., Bibi, I., Rahman, M. M., Naidu, R., Dong, Z., & Arshad, M. (2015). Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. International Journal of Environmental Research and Public Health, 12(10), 12371–12390.CrossRefGoogle Scholar
  59. Shakoor, M. B., Bibi, I., Niazi, N. K., Shahid, M., Nawaz, M. F., Farooqi, A., & Lüttge, A. (2018). The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere, 199, 737–746.CrossRefGoogle Scholar
  60. Singh, D., Singh, V., & Agnihotri, A. K. (2013). Study of textile effluent in and around Ludhiana district in Punjab, India. International Journal of Environmental Sciences, 3(4), 1271.Google Scholar
  61. Singh, C. K., Kumar, A., Shashtri, S., Kumar, A., Kumar, P., & Mallick, J. (2017). Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. Journal of Geochemical Exploration, 175, 59–71.CrossRefGoogle Scholar
  62. Srivastava, P., Singh, B., & Angove, M. (2005). Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, 290(1), 28–38.CrossRefGoogle Scholar
  63. State Environmental Protection Administration of China (SEPAC). (1995) Chinese Environmental Quality Standard for Soils (GB15618-1995). http://www.chinaep.net/hjbiaozhun/hjbz/hjbz017.html.
  64. Sultana, J., Farooqi, A., & Ali, U. (2014). Arsenic concentration variability, health risk assessment, and source identification using multivariate analysis in selected villages of public water system, Lahore, Pakistan. Environmental Monitoring and Assessment, 186(2), 1241–1251.CrossRefGoogle Scholar
  65. Sun, Y., Sun, G., Xu, Y., Wang, L., Liang, X., & Lin, D. (2013). Assessment of sepiolite for immobilization of cadmium-contaminated soils. Geoderma, 193, 149–155.CrossRefGoogle Scholar
  66. Tahir, M. W., Kauser, R., Tousif, S., Nazir, M. A., Arshad, A., & Butt, A. (2011). Crime trends among youth (15-29) in Gujrat, Pakistan. African Journal of Law and Criminology, 1(2), 39–49.Google Scholar
  67. USEPA (United State Environmental Protection Agency). (2005). Guidelines for carcinogenic risk assessment. United States Environmental Protection Agency. Washington, DC: Risk Assessment Forum.Google Scholar
  68. Valdman, E., Erijman, L., Pessoa, F. L. P., & Leite, S. G. F. (2001). Continuous biosorption of cu and Zn by immobilized waste biomass Sargassum sp. Process Biochemistry, 36(8), 869–873.CrossRefGoogle Scholar
  69. Villalba, I. M., Lacasaña, M., Rodríguez-Barranco, M., Hernández, A. F., Gonzalez-Alzaga, B., Aguilar-Garduño, C., & Gil, F. (2015). Biomonitoring of arsenic, cadmium, lead, manganese and mercury in urine and hair of children living near mining and industrial areas. Chemosphere, 124, 83–91.CrossRefGoogle Scholar
  70. Wang, S. W., Lin, K. H., Hsueh, Y. M., & Liu, C. W. (2007). Arsenic distribution in a tilapia (Oreochromis mossambicus) water-sediment aquacultural ecosystem in blackfoot disease hyperendemic areas. Bulletin of Environmental Contamination and Toxicology, 78(2), 147–151.CrossRefGoogle Scholar
  71. Wasserman, G. A., Liu, X., Parvez, F., Factor-Litvak, P., Ahsan, H., Levy, D., Siddique, A. B., et al. (2011). Arsenic and manganese exposure and children’s intellectual function. Neurotoxicology, 32(4), 450–457.CrossRefGoogle Scholar
  72. Water, O. (2012). Edition of the drinking water standards and health advisories. EP Agency (ed.). EPA 822-S-12-001.Google Scholar
  73. WHO G. (2011). Guidelines for drinking-water quality: Geneva: World Health Organization. 216, pp. 303–4.Google Scholar
  74. Yaylalı-Abanuz, G. (2011). Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchemical Journal, 99(1), 82–92.CrossRefGoogle Scholar
  75. Zeiner, M., Rezi, I., & Steffan, I. (2007). Analytical methods for the determination of heavy metals in the textile industry. Kemija u Industriji, 56(11), 587–559.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Noshin Masood
    • 1
  • Abida Farooqi
    • 1
    Email author
  • Mazhar Iqbal Zafar
    • 1
  1. 1.Environmental Geochemistry Laboratory, Department of Environmental Sciences, Faculty of Biological SciencesQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations