Quantitative analysis of urban cold island effects on the evolution of green spaces in a coastal city: a case study of Fuzhou, China

  • Yanhong Chen
  • Yuanbin Cai
  • Chuan TongEmail author


Urbanization is accompanied by drastic changes in the distribution of urban green space (UGS). This study aimed to analyze the relationship between the land surface temperature difference (∆LST) and the evolution of UGSs in the main area of Fuzhou City from 1993 to 2013 using a set of remote sensing images. The results manifest that with the maximum area of UGS loss, the less UGS extension, and the less UGS exchange, the UGS area declined sharply, which results in the rise of urban thermal problem and demonstrates the negative relationship between the UGS area and its internal land surface temperature (LST). Different UGS evolution types produced a diversified temperature response pattern. According to the profile assessment, a ∆LST above 10 °C, caused by the UGS loss converted to construction land, occurred in the peak position of the online profiles. Among the UGS loss, the conversion of water had the most apparent ∆LST, followed by wetlands and forest/grass areas. The threshold value of the UGS loss area (TVoA) was quantified by analyzing the temperature change effects based on the UGS evolution temperature effect index (GETX). We concluded that the urban heat island (UHI) can be effectively alleviated by keeping the magnitude of the UGS extensions equal to the UGS loss and the UGS utilization area below 0.04 km2 in Fuzhou City. Further analysis clarified that vegetation cover changes and the evolution of UGSs were the main factors controlling the distribution of the cold/heat island.


LST Quantitative analysis UGS evolution Urban cold island effect 



Land use/land cover


Urban green space


Urban heat island


Urban cold island


Land surface temperature


Relative land surface temperature


UGS evolution temperature changeeffectindex


Threshold value of UGS loss area



Many thanks to Chinese Academy of Sciences for their data sharing platforms known as Geographic Space Cloud ( and the Open Spatial Data Sharing Project (

Author contributions

Tong Chuan designed the overall ideas for this study. Chen Yanhong and Cai Yuanbin performed the data analysis. Chen Yanhong wrote this manuscript and all the authors got involved in discussion of improving the quality of this manuscript. Tong Chuan was responsible for the academic opinion of this manuscript.

Funding information

This study is supported by the Social Science Planning Project of Fujian (No. FJ2016C033).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. Aboelata, A. E. (2017). Study the vegetation as urban strategy to mitigate urban heat island in mega City Cairo. Procedia Environmental Sciences, 37, 386–395.CrossRefGoogle Scholar
  2. Bao, T., Li, X., Zhang, J., Zhang, Y., & Tian, S. (2016). Assessing the distribution of urban green spaces and its anisotropic cooling distance on urban heat island pattern in Baotou, China. ISPRS International Journal of Geographical Information Science, 5, 12.CrossRefGoogle Scholar
  3. Barsi, J. A., Schott, J. R., Palluconi, F. D., & Hook, S. J. (2005). Validation of a web-based atmospheric correction tool for single thermal band instruments. Proceedings of SPIE - The International Society for Optical Engineering, 58820.Google Scholar
  4. Bowler, D. E., Buyungali, L., Knight, T. M., et al. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147–155.CrossRefGoogle Scholar
  5. Cai, Y. B., Zhang, H., Pan, W. B., Chen, Y. H., & Wang, X. R. (2012). Urban expansion and its influencing factors in natural wetland distribution area in Fuzhou City, China. Chinese Geographical Science, 22(5), 568–577.CrossRefGoogle Scholar
  6. Cai, Y. B., Zhang, H., Zheng, P., et al. (2016). Quantifying the impact of land use/land cover changes on the urban heat island: A case study of the natural wetlands distribution area of Fuzhou City, China. Wetlands, 36(2), 285–298.CrossRefGoogle Scholar
  7. Cai, Z., Han, G. F., & Chen, M. C. (2018). Do water bodies play an important role in the relationship between urban form and land surface temperature? Sustainable Cities Society, 39, 487–498.CrossRefGoogle Scholar
  8. Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing Enviroment, 62(3), 241–252.CrossRefGoogle Scholar
  9. Chander, G., & Markham, B. (2003). Revised Landsat-5 TM radiometric calibration procedures and post calibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing, 41(11), 2674–2677.CrossRefGoogle Scholar
  10. Coutts, A. M., Daly, E., Beringer, J., & Tapper, N. J. (2013). Assessing practical measures to reduce urban heat: Green and cool roofs. Building and Environment, 70(12), 266–276.CrossRefGoogle Scholar
  11. Daniel, C., Mysore, G., & Nassir, E. (2005). Predicting river water temperatures using the equilibrium temperature concept with application on Miramichi river catchments (New Brunswick, Canada). Hydrological Processes, 19(11), 2137–2159.CrossRefGoogle Scholar
  12. Emmanuel, R., & Fernando, H. (2007). Urban heat islands in humid and arid climates: Role of urban form and thermal properties in Colombo, Sri Lanka and Phoenix, USA. Climate Research, 34(3), 241–251.CrossRefGoogle Scholar
  13. Feyisa, G. L., Meilby, H., Jenerette, G. D., et al. (2016). Locally optimized separability enhancement indices for urban land cover mapping: Exploring thermal environmental consequences of rapid urbanization in Addis Ababa, Ethiopia. Remote Sensing of Environment, 175, 14–31.CrossRefGoogle Scholar
  14. Fu, B. J., Zhao, W. W., & Chen, L. D. (2006). Progress and perspective of geographical-ecological processes. Acta Geographica Sinica, 61(11), 1123–1131 (in Chinese).Google Scholar
  15. Gao, Y., Xie, M. M., Fu, M. C., et al. (2014). Pattern dynamics of vegetation coverage of Plateau Valley-City in the Western China: A case study in Xining. Acta Ecologica Sinica, 34(5), 1094–1104.Google Scholar
  16. Garuma, G. F., Blanchet, J.-P., Girard, É., & Leduc, M. (2018). Urban surface effects on current and future climate. Urban Climate, 24, 121–138.CrossRefGoogle Scholar
  17. Heinrichs, H. U., & Markewitz, P. (2017). Long-term impacts of a coal phase-out in Germany as part of a greenhouse gas mitigation strategy. Applied Energy, 192, 234–246.CrossRefGoogle Scholar
  18. Jacobs, A. F. G., Jetten, T. H., Lucassen, D., Heusinkveld, B. G., & Joost P., N. (1997). Diurnal temperature fluctuations in a natural shallow water body. Agricultural and Forest Meteorology, 88(1–4), 269–277.CrossRefGoogle Scholar
  19. Jaganmohan, M., Knapp, S., Buchmann, C. M., & Schwarz, N. (2016). The bigger, the better? The influence of urban green space design on cooling effects for residential areas. Journal of Environmental Quality, 45, 134–145.CrossRefGoogle Scholar
  20. Jin, X. B., Long, Y., Sun, W., et al. (2017). Evaluating cities' vitality and identifying ghost cities in China with emerging geographical data. Cities, 63, 98–109.CrossRefGoogle Scholar
  21. Knox, J. C. (2001). Agricultural influence on landscape sensitivity in the upper Mississippi River valley. Catena, 42(2–4), 193–224.CrossRefGoogle Scholar
  22. Lahmer, W., Pfützner, B., & Becker, A. (2001). Assessment of land use and climate change impacts on the mesoscale. Physics and Chemistry of the Earth Part B: Hydrology, Oceans and Atmosphre, 26(7), 565–575.CrossRefGoogle Scholar
  23. Lazzarini, M., Marpu, P. R., & Ghedira, H. (2013). Temperature-land cover interactions: The inversion of urban heat island phenomenon in desert city areas. Remote Sensing of Environment, 130(4), 136–152.CrossRefGoogle Scholar
  24. Li, S. C., Zhao, Z. Q., & Wang, Y. L. (2009). Urbanization process and effects of natural resource and environment in China: Research trends and future directions. Progress in Geography, 28(1), 63–70 (in Chinese).Google Scholar
  25. Li, X., Zhou, W., Ouyang, Z., Xu, W., & Zheng, H. (2012). Spatial pattern of green space affects land surface temperature: Evidence from the heavily urbanized Beijing metropolitan area, China. Landscape Ecology, 27(6), 887–898.CrossRefGoogle Scholar
  26. Li, G. D., Zhang, X., Mirzaei, A. P., et al. (2018). There is considerable correlation between comprehensive urbanization index and UHI. Sustain Cities Soc, 38, 736–745.Google Scholar
  27. Matthew, M., Aaron, G., Allen, L., et al. (2014). Stray light artifacts in imagery from the Landsat 8 thermal infrared sensor. Remote Sensing, 6(11), 10435–10456.CrossRefGoogle Scholar
  28. Meerow, S., Newell, J. P., & Stults, M. (2016). Defining urban resilience: A review. Landscape and Urban Planning, 147, 38–49.CrossRefGoogle Scholar
  29. Monteiro, M. V., Doick, K. J., Handley, P., & Peace, A. (2016). The impact of green space size on the extent of local nocturnal air temperature cooling in London. Urban Forestry & Urban Greening, 16, 160–169.CrossRefGoogle Scholar
  30. Moonen, P., Defraeye, T., Dorer, V., Blocken, B., & Carmeliet, J. (2012). Urban physics: Effect of the microclimate on comfort, health and energy demand. Frontiers of Architectural Research, 1(3), 197–228.CrossRefGoogle Scholar
  31. National Bureau of Statistics of China, (2015). China statistical yearbook. Beijing: China Statistical Publishing House.Google Scholar
  32. Ngom, R., Gosselin, P., & Blais, C. (2016). Reduction of disparities in access to green spaces: Their geographic insertion and recreational functions matter. Applied Geography, 66, 35–51.CrossRefGoogle Scholar
  33. Noro, M., Busato, F., & Lazzarin, R. (2015). Urban heat island in Padua, Italy: Experimental and theoretical analysis. Indoor and Built Environment, 24(4), 514–533.CrossRefGoogle Scholar
  34. Oliveira, S., Andrade, H., & Vaz, T. (2011). The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Building and Environment, 46, 2186–2194.CrossRefGoogle Scholar
  35. Peng, J., Xie, P., Liu, Y., & Ma, J. (2016). Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sensing of Environment, 173, 145–155.CrossRefGoogle Scholar
  36. Peterson, T. C., & Owen, T. W. (2005). Urban heat island assessment: Metadata are important. Journal of Climate, 18(14), 2637–2646.CrossRefGoogle Scholar
  37. Qin, Z. H., Zhang, M. H., et al. (2001). Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data. Acta Geo Sinorama, 56(4), 456–466 (in Chinese).Google Scholar
  38. Qin, Z., Li, W., Zhang, M., Karnieli, A., & Berliner, P. (2003). Estimating of the essential atmospheric parameters of mono-window algorithm for land surface temperature retrieval from Landsat TM 6. Remote Sensing for Land & Resources, 15(2), 37–43 (in Chinese).Google Scholar
  39. Rana, M. M. P. (2011). Urbanization and sustainability: Challenges and strategies for sustainable urban development in Bangladesh. Environment, Development and Sustainability, 13(1), 237–256.CrossRefGoogle Scholar
  40. Ren, Y., Deng, L. Y., Zuo, S. D., Song, X. D., Liao, Y. L., Xu, C. D., Chen, Q., Hua, L. Z., & Li, Z. W. (2016). Quantifying the influences of various ecological factors on land surface temperature of urban forests. Environmental Pollution, 216(216), 519–529.CrossRefGoogle Scholar
  41. Sobrino, J. A., Caselles, V., & Becker, F. (1990). Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard. ISPRS Journal of Photogrammetry and Remote Sensing, 44(6), 343–354.CrossRefGoogle Scholar
  42. Sun, R., Chen, A., Chen, L., & Lü, Y. (2012). Cooling effects of wetlands in an urban region: The case of Beijing. Ecological Indicators, 20(9), 57–64.CrossRefGoogle Scholar
  43. Sun, R., Chen, L., & Braat, L. C. (2017). Effects of green space dynamics on urban heat islands: Mitigation and diversification. Ecosystem Services, 23, 38–46.CrossRefGoogle Scholar
  44. Turner, M. G. (2005). Landscape ecology North America: Past, present, and future. Ecology, 86(8), 1967–1974.CrossRefGoogle Scholar
  45. Van, N. O., Kawamura, K., Trong, D. P., et al. (2015). Temporal change and its spatial variety on land surface temperature and land use changes in the red River Delta, Vietnam, using MODIS time-series imagery. Environmental Monitoring and Assessment, 187(7), 1–11.Google Scholar
  46. Viegas, C. V., Saldanha, D. L., Bond, A., Ribeiro, J. L. D., & Selig, P. M. (2013). Urban land planning: The role of a master plan in influencing local temperatures. Cities, 35(35), 1–13.CrossRefGoogle Scholar
  47. Wu, L. N., Yang, S. T., Liu, X. Y., et al. (2014). Response analysis of land use change to the degree of human activities in Beiluo River basin since 1976. Acta Geo Sinorama, 69(1), 54–63 (in Chinese).Google Scholar
  48. Xu, H. Q. (2009). Quantitative analysis on the relationship of urban impervious surface with other components of the urban ecosystem. Acta Ecologica Sinica, 29(5), 2456–2462 (in Chinese).Google Scholar
  49. Yang, J., Sun, J., Ge, Q. S., & Li, X. M. (2017). Assessing the impacts of urbanization-associated green space on urban land surface temperature: A case study of Dalian, China. Urban Forestry & Urban Greening, 22, 1–10.CrossRefGoogle Scholar
  50. Yu, Z. W., Guo, Q. H., & Sun, R. H. (2015). Impact of urban cooling effect based on landscape scale: A review. Chinese Journal of Applied Ecology, 26, 636–642.Google Scholar
  51. Yu, Z., Guo, X., Jørgensen, G., & Vejre, H. (2017). How can urban green spaces be planned for climate adaptation in subtropical cities? Ecological Indicators, 82, 152–162.CrossRefGoogle Scholar
  52. Yu, Z. W., Guo, X. Y., Zeng, Y. X., et al. (2018). Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou City, China. Urban for. Urban Gree., 29, 113–121.CrossRefGoogle Scholar
  53. Zhang, H., Jing, X. M., Chen, J. Y., Li, J. J., & Schwegler, B. (2016). Characterizing urban fabric properties and their thermal effect using quickbird image and Landsat 8 thermal infrared (TIR) data: The case of downtown Shanghai, China. Remote Sensing, 8, 541–561.CrossRefGoogle Scholar
  54. Žuvela-Aloise, M., Koch R., Buchholz S., et al., 2016. Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna. Clim. Change (135): 1–14.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of EducationFujian Normal UniversityFuzhouChina
  2. 2.School of Geographical SciencesFujian Normal UniversityFuzhouChina
  3. 3.Fuzhou University Zhicheng CollegeFuzhouChina
  4. 4.College of Environment and ResourcesFuzhou UniversityFuzhouChina

Personalised recommendations