Distribution of Orientia tsutsugamushi in rodents and mites collected from Central India

  • Batul Akhunji
  • Ruchi Bhate
  • Nilesh Pansare
  • S. P. ChaudhariEmail author
  • Waqar Khan
  • N. V. Kurkure
  • S. W. Kolte
  • S. B. BarbuddheEmail author


Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracytosolic bacterium transmitted among humans and small mammals by some species of larval trombiculid mites (chiggers). It has been recognized as a pathogen of major public health concern in the Asia-Pacific region. As disease is considered as a neglected, there exists a gap in our knowledge of the disease with regard to the sporadic epidemiologic data in endemic areas. The purpose of the study was to find out the vector as well as pathogen distribution in rodents present in the scrub typhus-reported areas in central India. We studied the seasonal variations of occurrence in O. tsutsugamushi in rodents and mites by molecular detection targeting the 56-kDa and 47-kDa genes. Rodent and mite samples were collected during December 2015 to July 2017. A total of 127 samples from rodents, seven pools of mites, and four pools of fleas were collected and processed for DNA isolation. Nested PCRs targeting the 56-kDa and 47-kDa surface antigen genes were performed. In addition, quantification of bacterial load was done by qPCR targeting the 47-kDa gene. During the pre-monsoon season, O. tsutsugamushi was detected in 12% and 10% samples employing the 56-kDa and 47-kDa nested PCRs, respectively, whereas, during post-monsoon season, the respective detection rates were 13.33% and 26.66%. This study predicted a bimodal pattern during the months of pre-monsoon and post-monsoon season with a peak in post-monsoon. Thus, the impact of season on the perpetuation of O. tsutsugamushi in the host was observed.


Mites Orientia tsutsugamushi PCR Season 56-kDa type-specific antigen 



The authors thank Dr. Jhon Stenos, Senior Scientist/Director, Australian Rickettsial Reference Laboratory, Australia for sharing the DNA of Orientia tsutsugamushi.

Funding information

This research was funded by Indian Council of Agricultural Research under Niche Area of Excellence for the project “Centre for Zoonoses” (2014/EP & HS) to SPC.


  1. Anitha, P. K., Hoti, S. L., Kanungo, R., Jambulingam, P., Nazeer, Y., Nair, S., & Mookappan, S. (2017). Occurrence of Orientia tsutsugamushi genotypes in areas of union territory of Puducherry and Tamil Nadu state, India. Journal of Infectious Diseases and Pathology, 2, 124.Google Scholar
  2. Anon. (2009). Monthly Newsletter of National Centre for Disease Control, New Delhi, India, 13(1).Google Scholar
  3. Bhate, R., Pansare, N., Chaudhari, S. P., Barbuddhe, S. B., Choudhary, V. K., Kurkure, N. V., & Kolte, S. W. (2017). Prevalence and phylogenetic analysis of Orientia tsutsugamushi in rodents and mites from Central India. Vector Borne and Zoonotic Diseases, 17, 749–754.CrossRefGoogle Scholar
  4. Candasamy, S., Ayyanar, E., Paily, K., Karthikeyanm, P. A., Sundararajan, A., & Purushothaman, J. (2016). Abundance and distribution of trombiculid mites and Orientia tsutsugamushi, the vectors and pathogen of scrub typhus in rodents and shrews collected from Puducherry and Tamil Nadu, India. Indian Journal of Medical Research, 144(6), 893–900.CrossRefGoogle Scholar
  5. Chareonviriyaphap, T., Leepitakrat, W., Lerdthusnee, K., Chao, C. C., & Ching, W. M. (2014). Dual exposure of Rickettsia typhi and Orientia tsutsugamushi in the field-collected Rattus rodents from Thailand. Journal of Vector Ecology, 39, 182–189.CrossRefGoogle Scholar
  6. Chen, X. R. (2001). Scrub typhus and Orientia tsutsugamushi (pp. 176–179). Beijing: Military Medical Science Press.Google Scholar
  7. Chogle, A. R. (2010). Diagnosis and treatment of scrub typhus—the Indian scenario. Journal of Association of Physicians of India, 58, 11–12.Google Scholar
  8. Cosson, J. F., Galan, M., Bard, E., Razzauti, M., Bernard, M., Morand, S., Brouat, C., Dalecky, A., Bâ, K., Charbonnel, N., & Vayssier-Taussat, M. (2015). Detection of Orientia sp. DNA in rodents from Asia, West Africa and Europe. Parasites and Vectors, 8, 172.CrossRefGoogle Scholar
  9. De, W., Jing, K., Huan, Z., Qiong, Z. H., Monagin, C., Min, Z. J., Ping, H., Wen, K. C., & Yan, L. J. (2015). Scrub typhus, a disease with increasing threat in Guangdong, China. PLoS One, 10, e0113968.CrossRefGoogle Scholar
  10. Hashimoto, S., Kawado, M., Murakami, Y., Izumida, M., Ohta, A., Tada, Y., Shigematsu, M., & Yasui, Y. (2007). Epidemics of vector-borne diseases observed in infectious disease surveillance in Japan, 2000–2005. Journal of Epidemiology, 17, S48–S55.CrossRefGoogle Scholar
  11. Huang, X. D., Cheng, P., Zhao, Y. Q., Li, W. J., Zhao, J. X., Liu, H. M., Kou, J. X., & Gong, M. Q. (2017). Chigger mite (Acari: Trombiculidae) survey of rodents in Shandong Province, Northern China. Korean Journal of Parasitology, 55(5), 555–559.CrossRefGoogle Scholar
  12. Jiang, J., Chan, T. C., Temenak, J. J., Dasch, G. A., Ching, W. M., & Richards, A. L. (2004). Development of quantitative real-time polymerase chain reaction assay specific for Orientia tsutsugamushi. American Journal of Tropical Medicine and Hygiene, 70, 351–356.CrossRefGoogle Scholar
  13. Kelly, D. J., Fuerst, P. A., Ching, W. M., & Richards, A. L. (2009). Scrub typhus: the geographic distribution of phenotypic and genotypic variants of Orientia tsutsugamushi. Clinical and Infectious Diseases, 48(3), 203–230.CrossRefGoogle Scholar
  14. Kim, S. H., & Jang, J. Y. (2010). Correlations between climate change-related infectious diseases and meteorological factors in Korea. Journal of Preventive Medicine and Public Health, 43, 436–444.CrossRefGoogle Scholar
  15. Kim, D. Y., & Kim, K. K. (2005). Structure and function of HtraA family proteins, the key players in protein quality control. Journal of Biochemistry and Molecular Biology, 38, 266–274.Google Scholar
  16. Kim, D. M., Park, G., Kim, H. S., Lee, J. Y., Neupane, G. P., Graves, S., & Stenos, J. (2011). Comparison of conventional, nested, and real-time quantitative PCR for diagnosis of scrub typhus. Journal of Clinical Microbiology, 49, 607–612.CrossRefGoogle Scholar
  17. Kuo, C. C., Huang, J. L., Ko, C. Y., Lee, P. F., & Wang, H. S. (2011). Spatial analysis of scrub typhus infection and its association with environmental and socioeconomic factors in Taiwan. Acta Tropica, 120, 52–58.CrossRefGoogle Scholar
  18. Kuo, C. C., Lee, P. L., Chen, C. H., & Wang, H. C. (2015). Surveillance of potential hosts and vectors of scrub typhus in Taiwan. Parasites and Vectors, 8, 611.CrossRefGoogle Scholar
  19. Lerdthusnee, K., Nigro, J., Monkanna, T., Leepitakrat, W., Leepitakrat, S., Insuan, S., Charoensongsermkit, W., Khlaimanee, N., Akkagraisee, W., Chayapum, K., & Jones, J. W. (2008). Surveys of rodent-borne disease in Thailand with a focus on scrub typhus assessment. Integrative Zoology, 3, 267–273.CrossRefGoogle Scholar
  20. Lin, P. R., Tsai, H. P., Tsui, P. Y., Weng, M. H., Kuo, M. D., Lin, H. C., Chen, K. C., Ji, D. D., Chu, D. M., & Liu, W. T. (2011). Genetic typing, based on the 56-kilodalton type-specific antigen gene, of Orientia tsutsugamushi strains isolated from chiggers collected from wild-caught rodents in Taiwan. Applied and Environmental Microbiology, 77, 3398–3405.CrossRefGoogle Scholar
  21. Liu, Y. X., Feng, D., Suo, J. J., Xing, Y. B., Liu, G., Liu, L. H., Xiao, H. J., Jia, N., Gao, Y., Yang, H., Zuo, S. Q., Zhang, P. H., Zhao, Z. T., Min, J. S., Feng, P. T., Ma, S. B., Liang, S., & Cao, W. C. (2009). Clinical characteristics of the autumn-winter type scrub typhus cases in south of Shandong province, northern China. BMC Infectious Diseases, 9, 82.CrossRefGoogle Scholar
  22. Martin, M. T., Pedro, O. C., Caldeira, R. A., do Rosário, V. E., Neves, L., & Domingos, A. (2008). Detection of bovine babesiosis in Mozambique by a novel seminested hot-start PCR method. Veterinary Parasitology, 153, 225–230.CrossRefGoogle Scholar
  23. Mathai, E., Lloyd, G., Cherian, T., Abraham, O. C., & Cherian, A. M. (2001). Serological evidence for the continued presence of human rickettsioses in southern India. Annals Tropical Medicine and Parasitology, 95, 395–398.CrossRefGoogle Scholar
  24. Murata, M., Sudo, K., Suzuki, K., Aoyama, Y., Nogami, S., Tanaka, H., & Kawamura, A., Jr. (1985). Proliferating sites of Rickettsiatsutsugamushi in mice by different routes of inoculation evidenced with immunofluorescence. Japanese Journal of Experimental Medicine, 55, 193–199.Google Scholar
  25. Ogawa, M., Hagiwara, T., Kishimoto, T., Shiga, S., Yoshida, Y., Furuya, Y., Kaiho, I., Ito, T., Nemoto, H., Yamamoto, N., & Masukawa, K. (2002). Scrub typhus in Japan: epidemiology and clinical features of cases reported in 1998. American Journal of Tropical Medicine and Hygiene, 67, 162–165.CrossRefGoogle Scholar
  26. Olson, J. G., & Scheer, E. J. (1978). Correlation of scrub typhus incidence with temperature in the Pescadores Island of Taiwan. Annals of Tropical Medicine and Parasitology, 72, 195–196.CrossRefGoogle Scholar
  27. Premaratna, R., Blanton, L. S., Samaraweera, D. N., de Silva, G. N., Chandrasena, N. T., Walker, D. H., & de Silva, H. J. (2017). Genotypic characterization of Orientia tsutsugamushi from patients in two geographical locations in Sri Lanka. BMC Infectious Diseases, 17, 67.CrossRefGoogle Scholar
  28. Trowbridge, P., Premkumar, P. S., & Varghese, G. M. (2017). Prevalence and risk factors for scrub typhus in South India. Tropical Medicine and International Health, 22(5), 576–582.CrossRefGoogle Scholar
  29. Tsai, P. J., & Yeh, H. C. (2013). Scrub typhus islands in the Taiwan area and the association between scrub typhus disease and forest land use and farmer population density: geographically weighted regression. BMC Infectious Diseases, 13, 191.CrossRefGoogle Scholar
  30. Vivekanandan, M., Mani, A., Priya, Y. S., Singh, A. P., Jayakumar, S., & Purty, S. (2010). Outbreak of scrub typhus in Pondicherry. Journal of Association of Physicians of India, 58, 24–28.Google Scholar
  31. Watt, G., Kantipong, P., Jongsakul, K., Watcharapichat, P., Phulsuksombati, D., & Strickman, D. (2000). Doxycycline and rifampicin for mild scrub-typhus infections in northern Thailand: a randomized trial. Lancet, 356, 1057–1061.CrossRefGoogle Scholar
  32. Wei, Y., Huang, Y., Li, X., Ma, Y., Tao, X., Wu, X., & Yang, Z. (2017). Climate variability, animal reservoir and transmission of scrub typhus in Southern China. PLoS Neglected Tropical Diseases, 11(3), e0005447.CrossRefGoogle Scholar
  33. WHO. (1986). Mites, training and information guide. World Health Organization. WHO/VBC/86.93; p. 1–52.Google Scholar
  34. Wu, G. H. (2000). The epidemiological characteristics and prevention and cure of scrub typhus in China. Chinese Journal of Public Health, 16, 777–779.Google Scholar
  35. Xu, G., Walker, D. H., Jupiter, D., Melby, P. C., & Arcari, C. M. (2017). A review of the global epidemiology of scrub typhus. PLoS Neglected Tropical Diseases, 11, e0006062.CrossRefGoogle Scholar
  36. Yu, E. S. (2000). Studies on scrub typhus in China. Hongkong: Asia Medicine Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Batul Akhunji
    • 1
  • Ruchi Bhate
    • 1
  • Nilesh Pansare
    • 1
  • S. P. Chaudhari
    • 1
    Email author
  • Waqar Khan
    • 1
  • N. V. Kurkure
    • 1
  • S. W. Kolte
    • 1
  • S. B. Barbuddhe
    • 2
    Email author
  1. 1.Centre for Zoonoses, Department of Veterinary Public Health, Nagpur Veterinary CollegeMaharashtra Animal and Fishery Sciences UniversityNagpurIndia
  2. 2.ICAR-National Research Centre on MeatHyderabadIndia

Personalised recommendations