Advertisement

Comparison between observed and estimated data to assess air temperature variability and trends in the Sertão Paraibano mesoregion (Brazil)

  • Susane Eterna Leite Medeiros
  • Raphael AbrahãoEmail author
  • Louise Pereira da Silva
  • Wallysson Klebson de Medeiros Silva
Article
  • 19 Downloads

Abstract

Given the importance of climate for society at different scales, such as local, regional, and global scales, the analysis of trends of climatic elements improves the assessment of projections and variations, aiding in the design of policies focused on processes of adaptation to and mitigation of the effects of climate change. The aim of this study was to detect mean air temperature trends in the Sertão Paraibano mesoregion in Brazil by constructing temperature series with observed data provided by the Brazilian National Institute of Meteorology (INMET) collected in the localities of Patos and São Gonçalo and with data estimated using Estima_T software to study the spatial and temporal distribution of the mean air temperature of seven localities in the Sertão Paraibano mesoregion: Água Branca, Aguiar, Coremas, Patos, Princesa Isabel, São Gonçalo, and Teixeira. The temperature series with observed and estimated data were compared, showing the variability of using temperature estimates to overcome the lack of meteorological stations in the study area. Descriptive analysis shows low data dispersion in relation to the annual mean values and, therefore, low variability. The monthly mean temperature pattern was similar in all localities and December was always the warmest month, whereas July was the coldest, both in the estimated and observed data series. The non-parametric Mann-Kendall test indicated that estimated series show trends of significant increases in mean air temperature, in annual, biannual, quarterly, and monthly periods, in all localities. Sen’s slope results indicate significant increases in temperature from 0.008 to 0.011 °C/year.

Keywords

Climate Temperature Climate trends Mann-Kendall Brazilian semiarid 

Notes

Funding information

This work was supported by the National Council for Scientific and Technological Development (CNPq) under projects 305419/2015-3 and 401687/2016-3.

References

  1. Abrahão, R., Peixoto, I. M. B. M., Silva, L. P., Medeiros, S. E. L. (2017). Mais calor para o Sertão? Perspectivas de tendências no índice de calor do Sertão Paraibano. In: Congresso Brasileiro de Agrometeorologia, 20.Google Scholar
  2. AESA – Agência Executiva de Gestão das Águas do estado da Paraíba, 2009. Plano Estadual de Recursos Hídricos – Relatório final. http://www.aesa.pb.gov.br/perh/. Accessed 25 Aug 2017.
  3. Barry, R. G., & Chorley, R. J. (2009). Atmosphere, weather and climate. London and New York: Routledge.CrossRefGoogle Scholar
  4. Blain, G. C. (2010). Séries anuais de temperatura máxima média do ar no estado de São Paulo: variações e tendências climáticas. Revista Brasileira de Meteorologia, 25(1), 114–124.CrossRefGoogle Scholar
  5. Cavalcanti, E. P., Silva, V. P. R., & Sousa, F. A. S. (2006). Programa computacional para a estimativa da temperatura do ar para a região Nordeste do Brasil. Revista Brasileira de Engenharia Agrícola e Ambiental, 10(1), 140–147.CrossRefGoogle Scholar
  6. Cetin, M. (2015a). Determining the bioclimatic comfort in Kastamonu City. Environmental Monitoring and Assessment, 187(10), 640.CrossRefGoogle Scholar
  7. Cetin, M. (2015b). Using GIS analysis to assess urban green space in terms of accessibility: case study in Kutahya. International Journal of Sustainable Development & World Ecology, 22(5), 420–424.Google Scholar
  8. Cetin, M., Adiguzel, F., Kaya, O., & Sahap, A. (2018a). Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environment, Development and Sustainability, 20(1), 361–375.CrossRefGoogle Scholar
  9. Cetin, M., Zeren, I., Sevik, H., Cakir, C., & Akpinar, H. (2018b). A study on the determination of the natural park’s sustainable tourism potential. Environmental Monitoring and Assessment, 190(3), 167.CrossRefGoogle Scholar
  10. El Kenawy, A., López-Moreno, J. I., & Vicente-Serrano, S. M. (2012). Trend and variability of surface air temperature in northeastern Spain (1920–2006): linkage to atmospheric circulation. Atmospheric Research, 106, 159–180.CrossRefGoogle Scholar
  11. Goossens, C., & Berger, A. (1986). Annual and seasonal climatic variations over the northern hemisphere and Europe during the last century. Annales geophysicae. Series B. Terrestrial and Planetary Physics, 4(4), 385–399.Google Scholar
  12. IBGE – Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística) (2010). Resultados do Censo Demográfico. http://www.ibge.gov.br/home/estatistica/populacao/censo2010/caracteristicas_da_populacao/caracteristicas_da_populacao_tab_municipios_zip_xls.shtm. Accessed 30 May 2017.
  13. INMET – National Institute of Meteorology (Instituto Nacional de Meteorologia). (2017). Banco de dados meteorológicos para o ensino e pesquisa. www.inmet.gov.br/ portal/index.php?r=bdmep/bdmep. Accessed 01 Jul 2017.
  14. IPCC – Intergovernmental Panel in Climate Change. (2013). Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Edited by T. F. Stocker et al., New York: Cambridge University Press.Google Scholar
  15. IPCC – Intergovernmental Panel in Climate Change. 2014. Impacts, adaptation, and vulnerability. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Edited by C. B. Field et al., New York: Cambridge University Press.Google Scholar
  16. Jones, P. D., New, M., Parker, D. E., Martin, S., & Rigor, I. G. (1999). Surface air temperature and its changes over the past 150 years. Reviews of Geophysics, 37(2), 173–199.CrossRefGoogle Scholar
  17. Kendall, M. G. (1975). Rank correlation methods. London: Charles Griffin.Google Scholar
  18. Li, B., Chen, Y., Shi, X., Chen, Z., & Li, W. (2013). Temperature and precipitation changes in different environments in the arid region of northwest China. Theoretical and Applied Climatology, 112, 589–596.CrossRefGoogle Scholar
  19. Lima, R. A. F. A., Menezes, H. E. A., & Brito, J. I. B. (2010). Diagnóstico de tendência de mudanças na temperatura do ar no nordeste setentrional. Revista Caatinga, 23, 2.Google Scholar
  20. Mann, H. B. (1945). Nonparametric tests against trend. Econometric. The Econometric Society, 13, 245–259.CrossRefGoogle Scholar
  21. Marengo, J. A., Rusticucci, M., Penalba, O., & Renom, M. (2010). An intercomparison of observed and simulated extreme rainfall and temperature events during the last half of the twentieth century: part 2: historical trends. Climatic Change, 98(3), 509–529.CrossRefGoogle Scholar
  22. Modares, R., & Silva, V. P. R. (2007). Trends analysis of rainfall record in arid and semi-arid regions of Iran. Journal of Arid Environments, 70(1), 344–355.CrossRefGoogle Scholar
  23. NOAA – National Oceanic & Atmospheric Administration. Heat index. 2016. http://www.srh.noaa.gov/ama/?n=heatindex. Accessed 26 sep. 2017.
  24. Obregon, G. O., Marengo, J. A. (2007). Caracterização do clima no século XX no Brasil: tendência de chuvas e temperaturas médias e extremas. Relatório n° 2 – Projeto: Mudanças Climáticas Globais e Efeitos sobre a Biodiversidade – subprojeto: Caracterização do clima atual e definição das alterações climáticas para o território brasileiro ao longo do século XX.Google Scholar
  25. PBMC – Brazilian Panel on Climate Change (Painel Brasileiro de Mudanças Climáticas). (2014). Base Científica das Mudanças Climáticas. Contribuição do Grupo de Trabalho 1 do Painel Brasileiro de Mudanças Climáticas ao Primeiro Relatório de Avaliação Nacional sobre Mudanças Climáticas. Ambrizzi, T., Araujo, M. (Eds.). Rio de Janeiro.Google Scholar
  26. Salmi, T. A. M., Anttila, P., Ruoho-Airola, T., & Amnell, T. (2002). Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Den’s slope estimates-the Excel template application MAKESENS. Air. Qualitative Research, 7–35.Google Scholar
  27. Santos, C. D., Dantas, L. G., Melo, M. M. M. S., & Santos, E. D. (2012). Trends in indices for extremes in daily precipitation over Idaho-USA. Revista Brasileira de Geografia Física, 4, 852–862.CrossRefGoogle Scholar
  28. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379–1389.CrossRefGoogle Scholar
  29. Silva, V. P. R., Cavalcanti, E. P., Braga, C. C., Azevedo, P. V. (2007). Evaluating trends in solar radiation based on data fields from the NCEP/NACR reanalysis and measurements, 7th EMS Annual Meeting/8th ECAM. El Escorial, Madrid Anais. Madrid: European Meteorological Society.Google Scholar
  30. Sneyers, R. (1992). On the use of statistical analysis for the objective determination of climatic change. Meteorologische Zeitschrift, 1, 247–256.CrossRefGoogle Scholar
  31. Viney, N. R., & Bates, B. C. (2004). It never rains on Sunday: the prevalence and implications of untagged multi-day rainfall accumulations in the Australian high quality data set. International Journal of Climatology, 24, 1171–1192.CrossRefGoogle Scholar
  32. Yucedag, C, Kaya, L.G., Cetin, M., 2018. Identifying and assessing environmental awareness of hotel and restaurant employees’ attitudes in the Amasra District of Bartin. Environmental Monitoring and Assessment, 2018, 190(2), 60.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center of Alternative and Renewable EnergyFederal University of Paraíba (UFPB)João PessoaBrazil

Personalised recommendations