A spatio-temporal, landscape perspective on Acacia dealbata invasions and broader land use and cover changes in the northern Eastern Cape, South Africa

  • Aidan John GouwsEmail author
  • Charlie M. Shackleton


Biological invasions and human land use both have the potential to drastically alter the patterns and processes of landscapes, driving habitat fragmentation and altering natural disturbance regimes. The proliferation of an invasive species depends on composition and configuration of the landscape, as well as the invasiveness of the species. To effectively manage a highly invasive species, such as Acacia dealbata, it is crucial to understand the historical progression of the invasion within the landscape. This study sought to examine the landscape dynamics of biological invasions by tracking the historical spread of A. dealbata and broader land use/land cover (LULC) changes at different spatio-temporal scales in the northern Eastern Cape. A time-series of aerial photographs were systematically classified according to designated A. dealbata and LULC categories in ArcGIS to track the changes in the extent and rate of spread of A. dealbata. Markedly dynamic, multi-directional, and spatio-temporally variable LULC transitions were observed across the northern Eastern Cape over the last six decades. A. dealbata frequently retained a high proportion of cover over time, and despite the loss of cover to other LULC classes, a net increase in A. dealbata cover occurred as it spread at an overall annual rate of 0.11–0.21%, occupying approximately 8–18% of land cover across all sampled sites by 2013. Any management interventions to limit or control A. dealbata should therefore consider the spatio-temporal and LULC nuances of landscapes.


Acacia dealbata Dynamic Invasion Landscapes Scales Transitions 



This research would not have been possible without the support of the Plant Protection Research Institute division of the Agricultural Research Council (ARC). We are especially grateful to Dr. Alan Wood for facilitating the funding of this research through the ARC. We would also like to thank Dr. Paula Lorenzo and Prof. Mark Robertson for invaluable comments on a previous draft of this paper.


  1. Allen, C. R., Angeler, D. G., Garmestani, A. S., Gunderson, L. H., & Holling, C. S. (2014). Panarchy: theory and application. Ecosystems, 18(4), 578–589.CrossRefGoogle Scholar
  2. Barton, K. (2016). MuMIn: multi-model inference. R package version 1.15.6.Google Scholar
  3. Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research, 33(2), 261–304.CrossRefGoogle Scholar
  4. De Neergaard, A., Saarnak, C., Hill, T., Khanyile, M., Berzosa, A. M., & Birch-Thomsen, T. (2005). Australian wattle species in the Drakensberg region of South Africa—an invasive alien or a natural resource? Agricultural Systems, 85, 216–233.CrossRefGoogle Scholar
  5. ESRI (2011). ArcGIS Desktop: Release 10.Google Scholar
  6. Fuentes-Ramírez, A., Pauchard, A., Cavieres, L., & Garcia, R. A. (2011). Survival and growth of Acacia dealbata vs. native trees across an invasion front in south-central Chile. Forest Ecology and Management, 261(6), 1003–1009. Scholar
  7. Gavier-Pizarro, G. I., Radeloff, V. C., Stewart, S. I., Huebner, C. D., & Keuler, N. S. (2010). Housing is positively associated with invasive exotic plant species richness in New England, USA. Ecological Applications, 20(7), 1913–1925.CrossRefGoogle Scholar
  8. González-Muñoz, N., Costa-Tenorio, M., & Espigares, T. (2012). Invasion of alien Acacia dealbata on Spanish Quercus robur forests: impact on soils and vegetation. Forest Ecology and Management, 269, 214–221.CrossRefGoogle Scholar
  9. Gouws, A. J., & Shackleton, C. M. (2019). Abundance and correlates of the Acacia dealbata invasion in the northern Eastern Cape, South Africa. Forest Ecology and Management, 432, 455–466.CrossRefGoogle Scholar
  10. Harden, C. P., Chin, A., English, M. R., Fu, R., Galvin, K. A., Gerlak, A. K., McDowell, P. F., McNamara, D. E., Peterson, J. M., Poff, N. L. R., Rosa, E. A., Solecki, W. D., & Wohl, E. E. (2014). Understanding human-landscape interactions in the “Anthropocene”. Environmental Management, 53, 4–13.CrossRefGoogle Scholar
  11. Hernández, L., Martínez-Fernández, J., Cañellas, I., & De la Cueva, A. V. (2014). Assessing spatio-temporal rates, patterns and determinants of biological invasions in forest ecosystems: the case of Acacia species in NW Spain. Forest Ecology and Management, 329, 206–2113.CrossRefGoogle Scholar
  12. Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363.CrossRefGoogle Scholar
  13. Hui, C., Richardson, D. M., P, L., Minoarivelo, H. O., Garnas, J., & Roy, H. (2016). Defining invasiveness and invasibility in ecological networks. Biological Invasions, 18, 971–983.CrossRefGoogle Scholar
  14. Impson, F. A. C., Kleinjan, C. A., Hoffmann, J. H., Post, J. A., & Wood, A. R. (2011). Biological control of Australian Acacia species and Paraserianthes lophantha (Willd.) Nielsen (Mimosaceae) in South Africa. African Entomology, 19, 186–207.CrossRefGoogle Scholar
  15. Kaplan, H., Van Niekerk, A., Le Roux, J. J., Richardson, D. M., & Wilson, J. R. U. (2014). Incorporating risk mapping at multiple spatial scales into eradication management plans. Biological Invasions, 16, 691–703.CrossRefGoogle Scholar
  16. Klinger, R., & Brooks, M. L. (2017). Alternative pathways to landscape transformation: Invasive grasses, burn severity and fire frequency in arid ecosystems. Journal of Ecology, 105, 1521–1533.CrossRefGoogle Scholar
  17. Lambin, E. F., & Meyfroidt, P. (2010). Land use transitions: socio-ecological feedback versus socio-economic change. Land Use Policy, 27(2), 108–118.CrossRefGoogle Scholar
  18. Lenth, R. V. (2016). Least-squares means: the R package lsmeans. Journal of Statistical Software, 69(1), 1–33. Scholar
  19. Logan, M. (2010). Generalized linear models. In M. Logan (Ed.), Biostatistical design and analysis using R: a practical guide (pp. 483–530). Hoboken: Wiley Blackwell.CrossRefGoogle Scholar
  20. Lorenzo, P., & Rodríguez-Echeverría, S. (2012). Influence of soil microorganisms, allelopathy and soil origin on the establishment of the invasive Acacia dealbata. Plant Ecology and Diversity, 5(1), 67–73.CrossRefGoogle Scholar
  21. Lorenzo, P., González, L., & Reigosa, M. J. (2010). The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Annals of Forest Science, 67(1), 101–112.CrossRefGoogle Scholar
  22. Lorenzo, P., Rodrígues, J., González, L., & Rodríguez-Echeverría, S. (2017). Changes in microhabitat, but not allelopathy, affect plant establishment after Acacia dealbata invasion. Journal of Plant Ecology, 10(4), 610–617. Scholar
  23. Manjoro, M., Kakembo, V., & Rowntree, K. M. (2012). Trends in soil erosion and woody shrub encroachment in Ngqushwa District, Eastern Cape Province, South Africa. Environmental Management, 49(3), 570–579.CrossRefGoogle Scholar
  24. Montti, L., Carrillo, V. P., Gutiérrez-Angonese, J., Gasparri, N. I., Aragón, R., & Grau, H. R. (2017). The role of bioclimatic features, landscape configuration and historical land use in the invasion of an Asian tree in subtropical Argentina. Landscape Ecology, 32, 1–9. Scholar
  25. Moran, V. C., Hoffmann, J. H., & Zimmermann, H. G. (2013). 100 years of biological control of invasive alien plants in South Africa: history, practice and achievements. South African Journal of Science, 109(9/10), 1–6.CrossRefGoogle Scholar
  26. Mucina, L., & Rutherford, M. C. (2006). The vegetation of South Africa, Lesoto and Swaziland. Pretoria: South African National Biodiversity Institute (SANBI).Google Scholar
  27. Nel, J. L., Richardson, D. M., Rouget, M., Mgidi, N., Le Maitre, D. C., Van Wilgen, B. W., et al. (2004). A proposed classification of invasive plant species in South Africa: towards prioritizing species and areas for management action. South African Journal of Science, 100, 53–64.Google Scholar
  28. Ngorima, A., & Shackleton, C. M. (2018). Livelihood benefits and costs of an invasive alien tree (Acacia dealbata) to rural communities in the Eastern Cape, South Africa. Journal of Environmental Management, 229, 158–165. Scholar
  29. O’Reilly-Nugent, A., Palit, R., Lopez-Aldana, A., Medina-Romero, M., Wandrag, E., & Duncan, R. P. (2016). Landscape effects on the spread of invasive species. Current Landscape Ecology Reports, 1(3), 107–114.CrossRefGoogle Scholar
  30. Passos, I., Marchante, H., Pinho, R., & Marchante, E. (2017). What we don’t seed: the role of long-lived seed banks as hidden legacies of invasive plants. Plant Ecology, 218(11–12), 1313–1324.CrossRefGoogle Scholar
  31. Pauchard, A., & Shea, K. (2006). Integrating the study of non-native plant invasions across spatial scales. Biological Invasions, 8, 399–413.CrossRefGoogle Scholar
  32. Powell, K. I., Chase, J. M., & Knight, T. M. (2011). A synthesis of plant invasion effects on biodiversity across spatial scales. American Journal of Botany, 98(3), 539–548.CrossRefGoogle Scholar
  33. Puttick, J. R., Hoffman, M. T., & Gambiza, J. (2011). Historical and recent land-use impacts on the vegetation of Bathurst, a municipal commonage in Eastern Cape, South Africa. African Journal of Range and Forage Science, 28(1), 9–20.CrossRefGoogle Scholar
  34. Pyšek, P., & Hulme, P. E. (2005). Spatio-temporal dynamics of plant invasions: linking pattern to process. Ecoscience, 12(3), 302–316.CrossRefGoogle Scholar
  35. R Core Team. (2017) R: a language and environment for statistical computing.Google Scholar
  36. Republic of South Africa [RSA]. (2004) National Environmental Management: Biodiversity Act (NEMBA; Act No. 10 of 2004). Pretoria, South Africa: Government Gazette.Google Scholar
  37. Republic of South Africa [RSA]. (2014a). NEMBA: Alien and Invasive Species Regulations (GN598). Pretoria, South Africa: Government Gazette.Google Scholar
  38. Republic of South Africa [RSA]. (2014b) NEMBA: Alien and Invasive Species Regulations Listing 1 (GN599). Pretoria, South Africa: Government Gazette.Google Scholar
  39. Richardson, D. M., Pyšek, P., Rejmánek, M., Barbour, M. G., Panetta, F. D., & West, C. J. (2000). Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions, 6, 93–107.CrossRefGoogle Scholar
  40. Schoeman, F., Newby, T. S., Thompson, M. W., & Van den Berg, E. (2010). South African National land cover change map. Pretoria: Agricultural Research Council (ARC).Google Scholar
  41. Seath, J. L. (2017). The effects of different patch sizes of Acacia dealbata on avifauna diversity in montane grassland. Unpublished Honours dissertation, Rhodes University, Grahamstown, South Africa.Google Scholar
  42. Shackleton, C. M., McGarry, D., Fourie, S., Gambiza, J., Shackleton, S. E., & Fabricius, C. (2007). Assessing the effects of invasive alien species on rural livelihoods: case examples and a framework from South Africa. Human Ecology, 35(1), 113–127.CrossRefGoogle Scholar
  43. Shackleton, R. T., Shackleton, C. M., Shackleton, S. E., & Gambiza, J. (2013). Deagrarianisation and forest revegetation in a biodiversity hotspot on the Wild Coast, South Africa. PLoS One, 8(10).
  44. Stafford, W., Birch, C., Etter, H., Blanchard, R., Mudavanhu, S., Angelstam, P., Blignaut, J., Ferreira, L., & Marais, C. (2017). The economics of landscape restoration: benefits of controlling bush encroachment and invasive plant species in South Africa and Namibia. Ecosystem Services, 27, 193–202. Scholar
  45. Statistics South Africa. (2012). Census 2011: population dynamics. Accessed 27 July 2016.
  46. Statistics South Africa. (2014). Census 2011 provincial profile: Eastern Cape. Accessed 27 July 2016.
  47. Stickler, M. M., & Shackleton, C. M. (2015). Local wood demand, land cover change and the state of Albany thicket on an urban commonage in the Eastern Cape, South Africa. Environmental Management, 55(2), 411–422.CrossRefGoogle Scholar
  48. Theoharides, K. A., & Dukes, J. S. (2007). Plant invasion across space and time: factors affecting non-indigenous species success during four stages of invasion. New Phytologist, 176, 256–273.CrossRefGoogle Scholar
  49. Turbelin, A. J., Malamud, B. D., & Francis, R. A. (2017). Mapping the global state of invasive alien species: patterns of invasion and policy responses. Global Ecology and Biogeography, 26, 78–92.CrossRefGoogle Scholar
  50. Van Wilgen, B. W., & Wannenburgh, A. (2016). Co-facilitating invasive species control, water conservation and poverty relief: achievements and challenges in South Africa's Working for Water programme. Current Opinion in Environmental Sustainability, 19, 7–17. Scholar
  51. Van Wilgen, B. W., Forsyth, G. G., Le Maitre, D. C., Wannenburgh, A., Kotzé, J. D., Van den Berg, E., et al. (2012). An assessment of the effectiveness of a large, national-scale invasive alien plant control strategy in South Africa. Biological Conservation, 148(1), 28–38.CrossRefGoogle Scholar
  52. Van Wyk, B., & Van Wyk, P. (2013). Field guide to trees of Southern Africa (2nd ed.). Cape Town: Struik Nature.Google Scholar
  53. Vilà, M., & Ibáñez, I. (2011). Plant invasions in the landscape. Landscape Ecology, 26, 461–472.CrossRefGoogle Scholar
  54. Wickham, H. (2009). ggplot2: elegant graphics for data analysisGoogle Scholar
  55. With, K. A. (2002). The landscape ecology of invasive spread. Conservation Biology, 16(5), 1192–1203.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Environmental ScienceRhodes UniversityGrahamstownSouth Africa

Personalised recommendations