Advertisement

Data-based bivariate uncertainty assessment of extreme rainfall-runoff using copulas: comparison between annual maximum series (AMS) and peaks over threshold (POT)

  • Esmaeel Dodangeh
  • Kaka Shahedi
  • Karim Solaimani
  • Jenq-Tzong Shiau
  • John Abraham
Article
  • 36 Downloads

Abstract

Bivariate frequency analysis of extreme rainfall and runoff is crucial for water resource planning and management in a river basin. This study is aimed at accounting for uncertainties in bivariate analysis of extreme rainfall-runoff frequency in the Taleghan watershed, one of the major watersheds in northern Iran, using copulas. Two types of paired rainfall and runoff data, including annual maximum series (AMS) and peaks over threshold (POT) are adopted to investigate the uncertainties that arose due to the input data. The Cramer von-Mises goodness-of-fit test and Akaike information criteria (AIC) reveal that the Student’s t copula is the best-fit copula for PAMS-QAMS with Gaussian–Pearson III (P3) margins, while the Plackett copula is the best-fit copula for PPOT-QPOT with generalized Pareto (GPAR–GPAR) margins. A nonparametric bootstrapping method for sampling from p-level curves is established to investigate the effects of univariate and bivariate models selection and uncertainties induced by input data. The results indicated that the sampling uncertainty reduces POT data compared to AMS data due to the increased sample size. However, the parameterization uncertainty of the POT data increases because of the weaker dependence structure between rainfall and runoff for the POT data. The results also reveal that the larger sampling uncertainties are associated with higher p-level curves for both AMS and POT data which are induced by lower data density in the upper tail. For the study area, the input-data uncertainty is most significant in bivariate rainfall-runoff frequency analysis and quantile estimation, while the uncertainty induced by probabilistic model selection is least significant.

Keywords

Uncertainty analysis Bivariate model Copula Rainfall-runoff process Annual maximum series Peaks over threshold 

Notes

Acknowledgements

The authors would like to thank Dr. Stefan Gelissen for his technical supports. They also appreciate Iran Ministry of Power for their kind help and providing the data for this study.

References

  1. Acciolya, R. D. E., & Chiyoshi, F. Y. (2004). Modeling dependence with copulas: a useful tool for field development decision process. Journal of Petroleum Science and Engineering, 44(1–2), 83–91.CrossRefGoogle Scholar
  2. Adamson, P. T., Metcalfe, A. V., & Parmentier, B. (1999). Bivariate extreme value distributions: an application of the gibbs sampler to the analysis of floods. Water Resources Research, 35, 2825–2832.CrossRefGoogle Scholar
  3. Anderson, T. W., & Darling, D. A. (1952). Asymptotic theory of certain goodness of fit criteria based on stochastic process. Annals of Mathematical Statistics, 23, 193–212.CrossRefGoogle Scholar
  4. Ashkar, F., & Bobee, B. (1988). Confidence intervals for flood events under a Pearson 3 or log-Pearson distribution. Water Resources Bulletin, 24(3), 639–650.CrossRefGoogle Scholar
  5. Aucoin F (2015) Distributions that are sometimes used in hydrology. R package.Google Scholar
  6. Beauchmap, M., Assani, A. A., Landry, R., & Massiocotte, P. (2015). Temporal variability of the magnitude and timing of winter maximum daily flows in southern Quebec (Canada). Journal of Hydrology, 529, 410–417.CrossRefGoogle Scholar
  7. Box, G., & Jenkins, G. (1970). Time series analysis: forecasting and control. San Francisco: Holden-Day.Google Scholar
  8. Breymann, W., Dias, A., & Embrechts, P. (2003). Dependence structure for multivariate high-frequency data in finance. Quantitative Finance, 3(1), 1–14.CrossRefGoogle Scholar
  9. Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance. Chichester: John Wiley & Sons Ltd 308pp.CrossRefGoogle Scholar
  10. Chowdhury, J., & Stedinger, J. (1991). Confidence intervals for design floods with estimated skew coefficient. ASCE. Journal of Hydraulic Engineering, 11, 811–831.CrossRefGoogle Scholar
  11. Corbella, S., & Stretch, D. D. (2013). Simulating a multivariate sea storm using Archimedean copulas. Coastal Engineering, 76, 68–78.CrossRefGoogle Scholar
  12. Daneshkhah, A., Remesan, R., Chatrabgoun, O., & Holman, L. P. (2016). Probabilistic modeling of flood characterizations with parametric and minimum information pair-copula model. Journal of Hydrology, 540, 469–487.CrossRefGoogle Scholar
  13. Davison, A. C., & Smith, R. L. (1990). Models for exceedances over high thresholds. Journal of the Royal Statistical Society. Series B (Methodological), 52(3), 393–442.CrossRefGoogle Scholar
  14. De Michele, C., Salvadori, G., Vezzoli, R., & Pecora, S. (2013). Multivariate assessment of droughts: frequency analysis and dynamic return period. Water Resources Research, 49(10), 6985–6994.CrossRefGoogle Scholar
  15. Dixon, W. J. (1950). Analysis of extreme values. Annals of Mathematical Statistics, 21(1), 488–506.CrossRefGoogle Scholar
  16. Dodangeh E, Shahedi K, Solaimani K, Kossieris P (2017) Usability of BLRP model for hydrological applications in arid and semi arid regions with limited precipitation data. 3:539–555.Google Scholar
  17. Dung, N. V., Merz, B., Bardossy, A., & Apel, H. (2015). Handling uncertainty in bivariate quantile estimation—an application to flood hazard analysis in the Mekong Delta. Journal of Hydrology, 527, 704–717.CrossRefGoogle Scholar
  18. Embrechts, P., Andrea, H., & Juri, A. (2003). Using copulae to bound the value-at-risk for functions of dependent risks. Finance and Stochastics, 7(2), 145–167.CrossRefGoogle Scholar
  19. Eslamian, S., & Feizi, H. (2007). Maximum monthly rainfall analysis using L-moments for an arid region in Isfahan Province, Iran. Journal of Applied Meteorology and Climatology, 46(4), 494–503.CrossRefGoogle Scholar
  20. Fan, Y. R., Huang, W. W., Huang, G. H., Li, Y. P., Huang, K., & Li, Z. (2016). Hydrologic risk analysis in the Yangtze River basin through coupling Gaussian mixtures into copulas. Advances in Water Resources, 88, 170–185.CrossRefGoogle Scholar
  21. FAUT (Faculty of Agriculture, University of Tehran) (1993) General Investigation of Taleghan Basin: Hydrometeology and Climatology Report. 2: 20–25.Google Scholar
  22. Favre, A. C., El Adlouni, S., Thi emong, N., & Bobee, B. (2004). Multivariate hydrological frequency analysis using copula. Water Resources Research, 40, W01101.CrossRefGoogle Scholar
  23. Fu, G., & Butler, D. (2014). Copula-based frequency analysis of overflow and flooding in urban drainage systems. Journal of Hydrology, 510, 49–58.CrossRefGoogle Scholar
  24. Genest, C., & Favre, A. C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4), 347–360.CrossRefGoogle Scholar
  25. Genest, C., & Rivest, L. P. (1993). Statistical-inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88(423), 1034–1043.CrossRefGoogle Scholar
  26. Genest, C., Rémillard, B., & Beaudoin, D. (2009). Goodness-of-fit tests for copulas: a review and a power study. Insurance: Mathematics & Economics, 44(2), 199–213.Google Scholar
  27. Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. NY: Wiely.Google Scholar
  28. Groisman, P. Y., Knight, R. W., Easterling, D. R., Karl, T. R., Hegerl, G. C., & Razuvaev, V. N. (2005). Trends in intense precipitation in the climate record. Journal of Climate, 18, 1326–1350.CrossRefGoogle Scholar
  29. Grubbs, F. E., & Beck, G. (1972). Extension of sample sizes and percentage points for significance tests of outlying observations. Technometrics, 14(4), 847–853.CrossRefGoogle Scholar
  30. Halbert, K., Nguyen, C. C., Payrastre, O., & Gaume, E. (2016). Reducing uncertainty in flood frequency analysis: a comparison of local and regional approaches involving information on extreme historical floods. Journal of Hydrology, 541, 90–98.CrossRefGoogle Scholar
  31. Kao, S. C., & Govindaraju, R. S. (2010). A copula-based joint deficit index for droughts. Journal of Hydrology, 380, 121–134.CrossRefGoogle Scholar
  32. Kendall, M. G. (1975). Rank correlation methods (4th ed.). London: Charles Griffin.Google Scholar
  33. Kojadinovic, I., & Yan, J. (2010). Modeling multivariate distributions with continuous margins using the copula R package. Journal of Statistical Software, 34(9), 1–20.CrossRefGoogle Scholar
  34. Lee, S. H., & Maeng, S. J. (2003). Frequency analysis of extreme rainfall using L-moment. Irrigation and Drainage, 52(3), 219–230.CrossRefGoogle Scholar
  35. Li, F., Van Gelder, P. H. A. J. M., Ranasinghe, R., Callaghan, D. P., & Jongejan, R. B. (2014). Probabilistic modeling of extreme storms along the Dutch coast. Coastal Engineering, 86, 1–13.CrossRefGoogle Scholar
  36. Lin-Ye, J., Garcia-Leon, M., Gracia, V., & Sanchez-Arcilla, A. (2016). A multivariate statistical model of extreme events: an application to the Catalan coast. Coastal Engineering, 117, 138–156.CrossRefGoogle Scholar
  37. Malekinezhad, H., & Zare-Garizi, A. (2014). Regional frequency analysis of daily rainfall extremes using L-moments approach. Atmosfera, 27(4), 411–427.CrossRefGoogle Scholar
  38. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.CrossRefGoogle Scholar
  39. Mazas, F., & Hamm, L. (2017). An event-based approach for extreme joint probabilities of waves and sea levels. Coastal Engineering, 122, 44–59.CrossRefGoogle Scholar
  40. Mazouz, R., Assani, A. A., Quessy, J. F., & Legare, G. (2012). Comparison of the interannual variability of spring heavy floods characteristics of tributaries of the St. Lawrence River in Quebec (Canada). Advances in Water Resources, 35, 110–120.CrossRefGoogle Scholar
  41. Merz, R., & Blschl, G. (2008). Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information. Water Resources Research, 44(8), n/a–n/a.  https://doi.org/10.1029/2007WR006744.CrossRefGoogle Scholar
  42. Montanari, A. (2011). Uncertainty of hydrological predictions. In P. Wilderer (Ed.), Treatise on water science, vol. 2 (pp. 459–478). Oxford: Academic.CrossRefGoogle Scholar
  43. Nelson, R. B. (2006). An introduction to copulas. New York: Springer.Google Scholar
  44. Orsini-Zeganda, L., & Scalante-Sandoval, C. (2016). Flood frequency analysis using synthetic samples. Atmosfera, 29(4), 299–309.CrossRefGoogle Scholar
  45. Ozga-Zielinski, B., Ciupack, M., Adamowski, J., Khalil, B., & Malard, J. (2016). Snow-melt flood frequency analysis by means of copula based 2D probability distributions for the Narew River in Poland. Journal of Hydrology, 6, 21–51.Google Scholar
  46. Palaro, H., & Hotta, L. K. (2006). Using conditional copulas to estimate value at risk. Journal of Data Science, 4(1), 93–115.Google Scholar
  47. Patton, A. J. (2012). A review of copula models for economic time series. Journal of Multivariate Analysis, 110, 4–18.CrossRefGoogle Scholar
  48. R Core Team (2012), R: A language and environment for statistical computing, R Found. for Stat. Comput., Vienna.Google Scholar
  49. Rao, A. R., & Hamed, K. H. (2000). Flood frequency analysis. Boca Raton: CRC.Google Scholar
  50. Reddy, M. J., & Ganguli, P. (2012). Application of copulas for derivation of drought severity-duration-frequency curves. Hydrological Processes, 26(11), 1672–1685.CrossRefGoogle Scholar
  51. Rodrigo, F. S., Esteban-Parra, M. J., Pozo-Vázquez, D., & Castro-Diez, Y. (1999). A 500-year precipitation record in southern Spain. International Journal of Climatology, 19(11), 1233–1253.CrossRefGoogle Scholar
  52. Saf, B. (2009). Regional flood frequency analysis using L-moments for the West Mediterranean region of Turkey. Water Resources Management, 23(3), 531–551.CrossRefGoogle Scholar
  53. Salvadori, G., & De Michele, C. (2011). Estimating strategies for multiparameter multivariate extreme value copulas. Hydrology and Earth System Sciences, 15(1), 141–150.CrossRefGoogle Scholar
  54. Sarhadi, A., Soltani, S., & Modarres, R. (2012). Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis. Journal of Hydrology, 458-459, 68–86.CrossRefGoogle Scholar
  55. Schendel, T., & Thongwichian, R. (2017). Confidence intervals for return levels for the peals over-threshold approach. Advances in Water Resources, 99, 53–59.CrossRefGoogle Scholar
  56. Schepsmeier U, Brechmann EC (2012) CDVine: Statistical inference of C- and D-vine copulas, R package version 1.1–9.Google Scholar
  57. Serinaldi, F. (2013). An uncertain journey around the tails of multivariate hydrological distributions. Water Resources Research, 49(10), 6527–6547.CrossRefGoogle Scholar
  58. Serinaldi, F., Bonaccorso, B., Cancelliere, A., & Grimaldi, S. (2009). Probabilistic characterization of drought properties through copulas. Physics and Chemistry of the Earth, 34(10–12), 596–605.CrossRefGoogle Scholar
  59. Sharma, T. C., & Panu, U. S. (2014). A simplified model for predicting drought magnitudes: a case of streamflow droughts in Canadian prairies. Water Resources Management, 28(6), 1597–1611.CrossRefGoogle Scholar
  60. Shiau, J. T. (2006). Fitting drought duration and severity with two-dimensional copulas. Water Resources Management, 20(5), 795–815.CrossRefGoogle Scholar
  61. Shiau, J. T., & Hsiao, Y. Y. (2012). Water-deficit-based drought risk assessments in Taiwan. Natural Hazards, 64(1), 237–257.CrossRefGoogle Scholar
  62. Shiau, J. T., & Modarres, R. (2009). Copula based drought severity-duration-frequency analysis in Iran. Meteorological Applications, 16(4), 481–489.CrossRefGoogle Scholar
  63. Shiau, J. T., Wang, H. Y., & Tsai, C. T. (2010). Copula-based depth-duration-frequency analysis of typhoons in Taiwan. Hydrology Research, 41(5), 414–423.CrossRefGoogle Scholar
  64. Shiau, J. T., Modarres, R., & Nadarajah, S. (2012). Assessing multi-site drought connections in Iran using empirical copulas. Environmental Modeling and Assessment, 17(5), 469–482.CrossRefGoogle Scholar
  65. Sklar, M. (1959). Fonctions de r’epartition `a n dimensions et leurs marges. Publications de l’Institut Statistique de l’Université de Paris, 8, 229–231.Google Scholar
  66. Vergni, L., Todisco, F., & Mannocchi, F. (2015). Analysis of agricultural drought characteristics through a two-dimensional copula. Water Resources Management, 29(8), 2819–2835.CrossRefGoogle Scholar
  67. Volpi, E., & Fiori, A. (2012). Design event selection in bivariate hydrological frequency analysis. Hydrological Sciences Journal, 57(8), 1506–1515.CrossRefGoogle Scholar
  68. Xu, K., Yang, D., Xu, X., & Lei, H. (2015). Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China. Journal of Hydrology, 527, 630–640.CrossRefGoogle Scholar
  69. Yan, J. (2007). Enjoy the joy of copulas: With a package copula. Journal of Statistical Software, 21(4), 1–21.CrossRefGoogle Scholar
  70. Yang, T., Shao, Q., Hao, Z. C., Chen, X., Zhang, Z., Xu, C. Y., & Sun, L. (2010). Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China. Journal of Hydrology, 380(3–4), 386–405.CrossRefGoogle Scholar
  71. Yoon, P., Kim, T., & Yoo, C. (2013). Rainfall frequency analysis using a mixed GEV distribution: a case study for annual maximum rainfalls in South Korea. Stochastic Environmental Research and Risk Assessment, 27(5), 1143–1153.CrossRefGoogle Scholar
  72. Yue, S. (2001). A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrological Processes, 15, 1033–1045.  https://doi.org/10.1002/hyp.259.CrossRefGoogle Scholar
  73. Yue, S., Ouarda, T. B. M. J., Bobee, B., Legendre, P., & Bruneau, P. (1999). The gumbel mixed model for flood frequency analysis. Journal of Hydrology, 226, 88–100.CrossRefGoogle Scholar
  74. Yurekli, K., Modarres, R., & Ozturk, F. (2009). Regional daily maximum rainfall estimation for Cekerek watershed by L-moments. Meteorological Applications, 16, 435–444.CrossRefGoogle Scholar
  75. Zhang, L., & Singh, V. P. (2012). Bivariate rainfall and runoff analysis using entropy and copula theories. Entropy, 14, 1784–1812.CrossRefGoogle Scholar
  76. Zhang, Q., Xiao, M., & Singh, V. P. (2015). Uncertainty evaluation of copula analysis of hydrological droughts in the east river basin, China. Global and Planetary Change, 129, 1–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Esmaeel Dodangeh
    • 1
  • Kaka Shahedi
    • 1
  • Karim Solaimani
    • 1
  • Jenq-Tzong Shiau
    • 2
  • John Abraham
    • 3
  1. 1.Department of Watershed ManagementSari Agriculture Science and Natural Resources UniversitySariIran
  2. 2.Department of Hydraulic and Ocean EngineeringNational Cheng Kung UniversityTainanTaiwan
  3. 3.School of EngineeringUniversity of St. ThomasSt. PaulUSA

Personalised recommendations