Advertisement

Influence of hydrological flows from tropical watersheds on the dynamics of Cu and Zn in sediments

  • Andréia da Paz SchillerEmail author
  • Michelli Caroline Ferronato
  • Daniel Schwantes
  • Affonso Celso Gonçalves Jr
  • Deoclécio José Barilli
  • Jéssica Manfrin
Article

Abstract

This work aimed to evaluate, on a spatial and temporal scale, the effect of the flow on the concentrations of Cu and Zn in sediments from two water bodies (the Alvorada and Mandaguari Rivers). Five sediment-sampling periods were conducted, under four different streams in each sampling point (shallow/fast (SF), shallow/slow (SS), deep/fast (DF), deep/slow (DS)). Each sampling point represented the spring, the middle, and the mouth of the evaluated rivers. Some climatic variables were also evaluated, such as monthly temperature and rainfall. In addition, temperature, pH, dissolved oxygen (DO), and total solids were evaluated. Cu and Zn concentrations were obtained by FAAS. Cu and Zn levels are affected by the speed and depth of the water column. The quality of the sediments is affected by human activities in the surroundings, and according to legislation, levels of Cu and Zn in sediments offer risks of medium and high effects to aquatic biota. The highest accumulation of Cu in sediments occurs during October (221 mg kg−1) and December 2015 (225 mg kg−1), which coincides with the period of implantation of the soybean crop in the region, as well as the rain period. The increase of Cu in these periods suggests the occurrence of erosion. It can be concluded that Cu and Zn are found in large quantities in sediments, offering risk to the aquatic organisms. Cu levels exhibited direct relation with the sampling periods, with higher concentrations in rainy periods, while Zn concentrations suffer influence of the water column velocity and depth.

Keywords

Water resources mobility of copper and zinc metal dynamics heavy metals 

Notes

References

  1. Abbasi, A., Annor, F. O., & Giesen, N. (2016). Investigation of temperature dynamics in small and shallow reservoirs, case study: Lake Binaba, Upper East Region of Ghana. Water., 8(3), 1–25.  https://doi.org/10.3390/w8030084.CrossRefGoogle Scholar
  2. Adriano, D. C. (1986). Trace elements in the terrestrial environment. New York: Springer Verlag.  https://doi.org/10.1017/S0376892900035736.CrossRefGoogle Scholar
  3. Ali, M. M., Ali, M. L., Islam, M. S., & Rahman, M. Z. (2016). Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environmental Nanotechnology, Monitoring & Management, 5, 27–35.  https://doi.org/10.1016/j.enmm.2016.01.002.CrossRefGoogle Scholar
  4. Alves, I. C. C., El-Robrini, M., Santos, M. L. S., Monteiro, S. M., Barbosa, L. P. F., & Guimarães, J. T. F. (2012). Surface water’s quality and trophic status assessment in the Arari River (Marajo Island, Northern Brazil). Acta Amazonica, 42(1), 115–124.  https://doi.org/10.1590/S0044-59672012000100014.CrossRefGoogle Scholar
  5. Andrietti, M. C. B., Amaral, A. G., Almeida, F. T., Bongionavi, M. C., & Schneider, R. M. (2016). Water quality index and eutrophication indices of Caiabi River, MT. 2015. Revista Ambiente & Água, 11(1), 162–175.  https://doi.org/10.4136/ambi-agua.1769.CrossRefGoogle Scholar
  6. AOAC - Association of Official Analytical Chemists. (2012). Official methods of analysis of AOAC International (19th ed.). Gaithersburg: AOAC International.Google Scholar
  7. APHA. (2012). Standard methods for the examination of water and wastewater. American Public Health Association. Washington, DC: American Water Works Association.Google Scholar
  8. Barbour, M. T., Gerristsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish (2nd ed.). Washington, DC: USEPA/EPA 339p. https://archive.epa.gov/water/archive/web/html/index-14.html. Accessed May 2017.
  9. Bertoldo, D. C., Schons, D. C., Santos, C. R., Veiga, T. G., & Szymanky, N. (2014). Physical and chemical analysis of water from the Rio do Ouro in Ouro Verde do Oeste PR Brazil. Iniciação Científica CESUMAR, 16(2), 147–154 http://periodicos.unicesumar.edu.br/index.php/iccesumar/article/view/3792/2417. Accessed April 2017.
  10. Brazil. (2005) National Council for the Environment (Conama). Resolution no 357, March 17th of 2005. http://www.mma.gov.br/port/conama/res/res05/res35705.pdf. Accessed March 2017.
  11. Brazil. (2012) National Council for the Environment (Conama). Resolution no 454, November 1st of 2012. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=693. Accessed March 2017.
  12. Buzelli, G. M., & Cunha-Santino, M. B. (2013). Diagnosis and analysis of water quality and trophic state of Barra Bonita reservoir, SP. Revista Ambiente & Água, 8(1), 186–205.  https://doi.org/10.4136/ambi-agua.930.CrossRefGoogle Scholar
  13. Cavalcanti, M. T. O., Farias, M. S. S., Neto, J. D., & Cavalcanti, J. M. M. (2012). Quality of sediments – a case study in the region of confluency of Piranhas and Serido rivers in the Rio Grande do Norte State. HOLOS, 28(5), 151–166.  https://doi.org/10.15628/holos.2012.1074.CrossRefGoogle Scholar
  14. CCME. (1999) Canadian Council of Ministers of the Environment. Canadian environmental quality guidelines for the protection of aquatic life. http://www.ccme.ca/assets/pdf/pn_1497_waste_ char.rpt_final_e.pdf
  15. Cetesb - Environmental Company of the São Paulo State. (2015). Quality of surface water in the state of São Paulo (2014), appendix K. São Paulo: CETESB https://aguasinteriores.cetesb.sp.gov.br/publicacoes-e-relatorios. Accessed May 2017.
  16. Christofoletti, S. R., Conceição, F. T., & Spatti Junior, E. P. (2015). Relações hídroquímicas aplicadas a avaliação da qualidade da água na bacia do córrego Ibitinga, Rio Claro (SP). Geociências., 34(2), 224–237 http://www.revistageociencias.com.br/34/volume34_2_files/34-2-artigo-06.pdf. Accessed March 2017.
  17. CONAMA (2005). Resolução nº 357, de 17 de março de 2005. National Council for the Environment (CONAMA). Official Diary of the Union, Brasília, DF, 1,58–63.Google Scholar
  18. Coringa, J. E. S., Pezza, L., Coringa, E. A. O., & Weber, O. L. S. (2016). Geochemical distribution and bioavailability of trace metals in sediments of the Bento Gomes River, Poconé - MT, Brazil. Acta Amazonica, 46(2), 161–164.  https://doi.org/10.1590/1809-4392201502215.CrossRefGoogle Scholar
  19. Daneluz, D., & Tessaro, D. (2015). Physico-chemical and microbiological standards of water springs and shallow wells on rural properties in the southwest region of Paraná. Arquivos do Instituto Biológico, 82, 1–5.  https://doi.org/10.1590/1808-1657000072013.CrossRefGoogle Scholar
  20. Edokpayi, J. N., Odiyo, J. O., Popoola, O. E., & Msagati, T. A. M. (2016). Assessment of trace metals contamination of surface water and sediment: a case study of Mvudi River, South Africa. Sustainability, 8(135), 1–13.  https://doi.org/10.3390/su8020135.CrossRefGoogle Scholar
  21. Fadigas, F. S., Sobrinho, N. M. B. A., Mazur, N., Anjos, L. H. C., & Freixo, A. A. (2006). Proposition of reference values for natural concentration of heavy metals in Brazilian soils. Revista Brasileira de Engenharia Agrícola e Ambiental, 10, 699–705.  https://doi.org/10.1590/S1415-43662006000300024.CrossRefGoogle Scholar
  22. Ferreira, D. F. (2003). SISVAR: Sistemas de análises estatísticas. Lavras: UFLA.Google Scholar
  23. Franco, G. B., Betim, L. S., Marques, E. A. G., Gomes, R. L., & Chagas, C. S. (2012). Relationship water quality and environmental fragility of Almada River Watershed, Bahia, Brazil. Revista Brasileira de Geociencias, 42(1), 114–127 https://ainfo.cnptia.embrapa.br/digital/bitstream/item/77716/1/Relacao-qualidade-da-agua-e-fragilidade-ambiental-da-Bacia-do-Rio-Almada.pdf.Google Scholar
  24. Froehner, S., & Martins, R. F. (2008). Evaluation of the chemical composition of sediments from the Barigüi River in Curitiba, Brazil. Química Nova, 31(8), 2020–2026.  https://doi.org/10.1590/S0100-40422008000800020.CrossRefGoogle Scholar
  25. Gichana, Z., Njiru, M., Raburu, P. O., & Masese, F. O. (2015). Effects of human activities on benthic macroinvertebrate community composition and water quality in the upper catchment of the Mara River Basin, Kenya. Lakes & Reservoirs: Research and Management, 20(2), 128–137.  https://doi.org/10.1111/lre.12094.CrossRefGoogle Scholar
  26. Hsu, L. C., Huang, C., Chuang, Y., Chen, H., Chan, Y., Teah, H. Y., Chen, T., Chang, C., Liu, Y., & Tzou, Y. (2016). Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries. Nature Scientific Reports, 6(34250).  https://doi.org/10.1038/srep34250.
  27. Hugen, C., Miquelluti, D. J., Campos, M. L., Almeida, J. Á., Ferreira, E. R. N. C., & Pozzan, M. (2013). Cu and Zn contents in soil profiles of diferente lithologies in Santa Catarina. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(6), 622–628.  https://doi.org/10.1590/S1415-43662013000600008.CrossRefGoogle Scholar
  28. Ishikawa, D. N., Noale, R. Z., Ohe, T. H. K., Souza, E. B. R., Scarmínio, I. S., Barreto, W. J., & Barreto, S. R. G. (2009). Avaliation of the environmental risk by metal distribution in sediments from lakes formed by cambé stream at Londrina. Química Nova, 32(7), 1744–1749.  https://doi.org/10.1590/S0100-40422009000700012.CrossRefGoogle Scholar
  29. Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. Flórida: CRC. Press 365p.Google Scholar
  30. Luiz-Silva, W., Matos, R. H. R., Kristosch, G. C., & Machado, W. (2006). Spatial and seasonal variability of trace-element concentrations in sediments from the Santos-Cubatão estuarine system, São Paulo, Brazil. Química Nova, 29(2), 256–263.  https://doi.org/10.1590/S0100-40422006000200016.CrossRefGoogle Scholar
  31. Magalhães, G. C., Fantin-Cruz, I., Zeilhofer, P., & Dores, E. F. G. C. (2016). Potentially toxic metals in rivers upstream of Pantanal Norte. Revista Ambiente & Água, 11(4), 833–850.  https://doi.org/10.4136/ambi-agua.1827.CrossRefGoogle Scholar
  32. Manfrin, J., Schwantes, D., Gonçalves, A. C., Jr., Ferronato, M. C., Valdemir, A., & Schiller, A. d. P. (2018). Contamination by lead in sediments at Toledo River, hydrographic basin of PARANÁ III. Environmental Monitoring and Assessment, 190(243).  https://doi.org/10.1007/s10661-018-6611-9.
  33. Paraná. (1991) Superintendency of Water Resources. Ordinance SUREHMA no 4, March 21th of 1991. 23p. https://www.recursoshidricos.pr.gov.br/arquivos/File/enquadramento-b-pirapo.pdf. Accessed June 2017.
  34. Paraná. (2016) Ministry of Agriculture, Livestock and Supply. Secretary of Agricultural Policy. Ordinance no 177, July 20th of 2016. 36 p. https://apps.agropecuaria.ws/site/Conteudo/7844. Accessed March 2017.
  35. Pinto, V. C. (2009). Ecologia e qualidade ecológica de comunidades de macroinvertebrados bentónicos em zonas costeiras e estuarinas: abordagem comparativa. Lisboa: Mestrado em ecologia marinha 111 p.Google Scholar
  36. Pratte-Santos, R., & Simões, L. N. (2010). Physcal-chemical variables in levels of space stratification in lentic environment in the Biological Reserve of Duas Bocas, Cariacica, Espírito Santo, ES. Natureza On Line., 8(2), 74–77 https://www.naturezaonline.com.br/natureza/conteudo/pdf/06_Pratte-SantosR&Sim%C3%B5esLN_7477.pdf. Accessed March 2017.
  37. Rangel, E. M., & Sanches Filho, P. J. (2014). Determination of trace metals in the sediment of the prolongation of avenue Bento Gonçalves, Pelotas (RS). Revista Ibero-Americana de Ciências Ambientais., 5(1), 229–241.  https://doi.org/10.6008/SPC2179-6858.2014.001.0016.CrossRefGoogle Scholar
  38. Reis, A., Parker, A., & Alencoão, A. (2014). Storage and origin of metals in active stream sediments from mountainous rivers: a case study in the River Douro basin (North Portugal). Applied Geochemistry, 44, 69–79.  https://doi.org/10.1016/j.apgeochem.2013.09.016.CrossRefGoogle Scholar
  39. Rendina, A., Cabo, L., Arreghuini, S., Bargiela, M., Iorio, AF. (2001). Geochemical distribution and mobility factors of zn and cu in sediments of the reconquista river, Argentina. La Revista internacional de contaminación ambiental, 17(4), 187­192.Google Scholar
  40. Ribeiro, E. V., Magalhães, A. P., Jr., Horn, A. H., & Trindade, W. M. (2012). Heavy metals and water quality of the São Francisco river in segment between Três Marias and Pirapora–MG: index of contamination. Geonomos, 20(1), 49–63.  https://doi.org/10.18285/geonomos.v20i1.27.CrossRefGoogle Scholar
  41. Santos HG, Zaroni MJ. (2012) Teor de óxidos de ferro. Agência Embrapa de informações tecnológicas. https://www.agencia.cnptia.embrapa.br/gestor/solos_tropicais/arvore/CONTAG01_49_2212200611552.html. Accessed Sept 2017.
  42. Santos, J. S., Souza, F. M., & Santos, M. L. P. (2013). Distribution of Zn, Pb, Ni, Cu, Mn and Fe in superficial sediment fractions of the Cachoeira River in the south of Bahia, Brazil. Química Nova, 36(2), 230–236.  https://doi.org/10.1590/S0100-40422013000200005.CrossRefGoogle Scholar
  43. Saraiva, V. K., Nascimento, M. R. L., Palmieri, H. E. L., & Jacomino, V. M. F. (2009). Evaluation of sediment quality – case study: sub-watershed of Espírito Santo stream, affluent of the São Francisco river. Química Nova, 32, 1995–2002.  https://doi.org/10.1590/S0100-40422009000800003.CrossRefGoogle Scholar
  44. Schons DC, Schwantes D, Aleixo V, Szymansky N, Ferronato MC, Gonçalves Jr AC, Pertile VE, Moraes LB. (2014) Monitoramento da qualidade das águas do rio do Ouro, em Ouro Verde do Oeste-PR. Análises Toxicológicas. Revista Agrogeoambiental, special edition (2):11-18.  https://doi.org/10.18406/2316-1817v0n02014750
  45. Wang, G., Zhang, J., & Yang, Q. (2016). Attribution of runoff change for the xinshui river catchment on the loess plateau of China in a changing environment. Water., 8(6), 267.  https://doi.org/10.3390/w8060267.CrossRefGoogle Scholar
  46. Ward, N. D., Keil, R. G., Medeiros, P. M., Brito, D. C., Cunha, A. C., Dittmar, T., Yager, P. L. Y., Krusche, A. V., & Richey, J. E. (2013). Degradation of terrestrially derived macromolecules in the Amazon River. Nature Geoscience, 6(6), 1–4.  https://doi.org/10.1038/ngeo1817.CrossRefGoogle Scholar
  47. Welz, B., & Sperling, M. (1999). Atomic absorption spectrometry (2nd ed.). Weinheim: Wiley-VCH 341 p.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Postgraduate Program in Agronomy, Campus of Marechal Cândido RondonState University of Western ParanáMarechal Cândido RondonBrazil
  2. 2.Agronomy, Campus of ToledoPontifical Catholic University of ParanáToledoBrazil
  3. 3.Agronomy DepartamentEducational College of MedianeiraMedianeiraBrazil
  4. 4.Center of Engineering and Exact Sciences, Campus of ToledoState University of Western ParanáToledoBrazil

Personalised recommendations