Assessment of artificial groundwater recharge potential through estimation of permeability values from infiltration and aquifer tests in unconsolidated alluvial formations in coastal areas

  • Milad H. Z. Masoud
  • Jalal M. Basahi
  • Faisal Kamal ZaidiEmail author


Twenty infiltration tests and 12 pumping tests were carried out in Wadi Baysh in southwestern Saudi Arabia. The objective of the study was to assess the soil and aquifer permeability from the point of view of artificial groundwater recharge. Infiltration tests showed that the soil permeability values ranged from 0.58 to 37.15 m/day and showed good recharge potential. The analysis of the pumping tests showed that the aquifer permeability values ranged from 2.6 to 57.4 m/day and were approximately within the same range as those obtained from infiltration tests. Monitoring of groundwater levels in a few wells before and 1 month after a heavy rainfall event in August 2016 shows an average increase of 2.25 m in the groundwater levels which substantiates the recharge rates obtained from infiltration and pumping tests. Average annual groundwater recharge for the area calculated from water table fluctuation method is 72.08 mm/year indicating that the lower reaches of Wadi Baysh catchment has good potential for groundwater recharge and if managed properly can help in tackling the problem of groundwater depletion due to excessive pumping.


Wadi Baysh Groundwater recharge Infiltration tests Pumping tests 



Authors express their gratitude and appreciation to King Abdulaziz City for Science and Technology (KACST) for providing the research grant Project (أت-34-336#). Authors are grateful to Professor Michael Schneider, Frei Berlin University, Germany, for his guidance and contribution to this project. Authors express special gratitude and thanks to Mr. Syed Faisal Zaidi, Mohammad Albishi and Saud Al Gedaani, Water Research Center, King Abdulaziz University (KAU) for their assistance in this project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abu-Alainine, H. A. (1979). Geomorphology (15th ed.). Beirut: Dar Al-Nahdah Al-Arabia In Arabic.Google Scholar
  2. Aeschbach-Hertig, W., & Gleeson, T. (2012). Regional strategies for the accelerating global problem of groundwater depletion. Nature Geoscience, 5(12), 853.CrossRefGoogle Scholar
  3. Al-Sharif, A. S. (1977). Geography of Saudi Arabia (Vol. 1). Riyadh: Dar Al Marrekh Press In Arabic.Google Scholar
  4. Annaka, T., & Hanayama, S. (2007). Pressure head profile within growing fingers in initially dry glass beads. Soil Science Society of America Journal, 71, 901–908.CrossRefGoogle Scholar
  5. Beven, K., & Germann, P. (1982). Macropores and water flow in soils. Water Resources Research, 18, 1311–1325.CrossRefGoogle Scholar
  6. Bouwer, H. (2002). Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeology Journal, 10(1), 121–142.Google Scholar
  7. Burgy, R. H., & Luthin, J. N. (1956). A test of single and double ring infiltrometers. Transactions of the American Geophysical Union, 37, 189–192.CrossRefGoogle Scholar
  8. Cai, Z., & Ofterdinger, U. (2016). Analysis of groundwater-level response to rainfall and estimation of annual recharge in fractured hard rock aquifers, NW Ireland. Journal of Hydrology, 535, 71–84.CrossRefGoogle Scholar
  9. Callahan, T. J., Vulava, V. M., Passarello, M. C., & Garrett, C. G. (2012). Estimating groundwater recharge in lowland watersheds. Hydrological Processes, 26(19), 2845–2855.CrossRefGoogle Scholar
  10. Cashman, P. M., & Preene, M. (2001). Groundwater lowering in construction: a practical guide. Boca Raton: CRC Press.Google Scholar
  11. Clothier, B. E., Green, S. R., & Deurer, M. (2008). Preferential flow and transport in soil: progress and prognosis. European Journal of Soil Science, 59, 2–13.CrossRefGoogle Scholar
  12. Coelho, V. H. R., Montenegro, S., Almeida, C. N., Silva, B. B., Oliveira, L. M., Gusmão, A. C. V., Freitas, E. S., & Montenegro, A. A. (2017). Alluvial groundwater recharge estimation in semi-arid environment using remotely sensed data. Journal of Hydrology, 548, 1–15.CrossRefGoogle Scholar
  13. Cooper, H. H., & Jacob, C. E. (1946). A generalized graphical method for evaluating formation constants and summarizing well-field history. Eos, Transactions American Geophysical Union, 27(4), 526–534.CrossRefGoogle Scholar
  14. De Rooij, G. H. (2000). Modeling fingered flow of water in soils owing to wetting front instability: a review. Journal of Hydrology, 231, 277–294.CrossRefGoogle Scholar
  15. DiCarlo, D. A. (2004). Experimental measurements of saturation overshoot on infiltration. Water Resources Research, 40(4).Google Scholar
  16. DiCarlo, D. A. (2007). Capillary pressure overshoot as a function of imbibition flux and initial water content. Water Resources Research, 43(8).Google Scholar
  17. Fan, J., Oestergaard, K. T., Guyot, A., & Lockington, D. A. (2014). Estimating groundwater recharge and evapotranspiration from water table fluctuations under three vegetation covers in a coastal sandy aquifer of subtropical Australia. Journal of Hydrology, 519, 1120–1129.CrossRefGoogle Scholar
  18. Foster, S. S. D., & Chilton, P. J. (2003). Groundwater: the processes and global significance of aquifer degradation. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1440), 1957–1972.CrossRefGoogle Scholar
  19. Fürst, T., Vodák, R., Šír, M., & Bíl, M. (2009). On the incompatibility of Richards’ equation and finger-like infiltration in unsaturated homogeneous porous media. Water Resources Research, 45(3).Google Scholar
  20. Gale, I. (2005). Strategies for managed aquifer recharge (MAR) in semi-arid areas. Paris: UNESCO.Google Scholar
  21. Gerke, H. H., Germann, P., & Nieber, J. (2010). Preferential and unstable flow: from the pore to the catchment scale. Vadose Zone Journal, 9, 207–212.CrossRefGoogle Scholar
  22. Giordano, M. (2009). Global groundwater? Issues and solutions. Annual Review of Environment and Resources, 34, 153–178.CrossRefGoogle Scholar
  23. Gleeson, T., VanderSteen, J., Sophocleous, M. A., Taniguchi, M., Alley, W. M., Allen, D. M., & Zhou, Y. (2010). Groundwater sustainability strategies. Nature Geoscience, 3(6), 378–379.CrossRefGoogle Scholar
  24. Green, W. H., & Ampt, C. (1911). Studies of soil physics, part I.—the flow of air and water through soils. The Journal of Agricultural Science, 41–24.Google Scholar
  25. Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H., & Aureli, A. (2011). Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405, 532–560.CrossRefGoogle Scholar
  26. Greenwood, W. R., Stoeser, D. B., Fleck, R. J., & Stacey, J. S. (1982). Late Proterozoic island-arc complexes and tectonic belts in the southern part of the Arabian Shield, Kingdom of Saudi Arabia: Saudi Arabian Deputy Ministry for Mineral Resources Open-File Report USGS-OF-02-8, 46 p.Google Scholar
  27. Healy, R. W., & Cook, P. G. (2002). Using groundwater levels to estimate recharge. Hydrogeology Journal, 10(1), 91–109.CrossRefGoogle Scholar
  28. Kohnke, H. (1968). Soil physics. New York: McGraw-Hill 224 p.Google Scholar
  29. Kostiakov, A. N. (1932). On the dynamics of the coefficient of water-percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration. Transactions Congress International Society for Soil Science, 6th, Moscow Part A, pp. 17–21.Google Scholar
  30. Kruseman, G. P., & De Ridder, N. A. (1994). Analysis and evaluation of pumping test data (2nd ed.). Wageningen: International Institute for Land Reclamation and Improvement (ILRI) ISBN 90-70754-20-7.Google Scholar
  31. Kung, K. J. (1993). Laboratory observation of funnel flow mechanism and its influence on solute transport. Journal of Environmental Quality, 22, 91–102.CrossRefGoogle Scholar
  32. Lewis, M. A., Cheney, C. S., & ÓDochartaigh, B. É. (2006). Guide to permeability indices, information products Programme Open Report CR/06/160N. Keyworth: Nottingham British Geological Survey.Google Scholar
  33. Lohman, S. W. (1979). Groundwater hydraulics: U.S. Geological Survey Professional Paper 708, 70p.Google Scholar
  34. Massuel, S., Perrin, J., Mascre, C., Mohamed, W., Boisson, A., & Ahmed, S. (2014). Managed aquifer recharge in South India: What to expect from small percolation tanks in hard rock? Journal of Hydrology, 512, 157–167.CrossRefGoogle Scholar
  35. Nieber, J. L., Dautov, R. Z., Egorov, A. G., & Sheshukov, A. Y. (2005). Dynamic capillary pressure mechanism for instability in gravity-driven flows; review and extension to very dry conditions. Transport in Porous Media, 58, 147–172.CrossRefGoogle Scholar
  36. Philip, J. R. (1957). The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Science, 84, 257–264. Scholar
  37. Qin, D., Qian, Y., Han, L., Wang, Z., Li, C., & Zhao, Z. (2011). Assessing impact of irrigation water on groundwater recharge and quality in arid environment using CFCs, tritium and stable isotopes, in the Zhangye Basin, Northwest China. Journal of Hydrology, 405(1-2), 194–208.Google Scholar
  38. Rahimi, S., Roodposhti, M. S., & Abbaspour, R. A. (2014). Using combined AHP–genetic algorithm in artificial groundwater recharge site selection of Gareh Bygone Plain, Iran. Environmental Earth Sciences, 72(6), 1979–1992.CrossRefGoogle Scholar
  39. Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1, 318–333.CrossRefGoogle Scholar
  40. Rodríguez-Iturbe, I., & Porporato, A. (2007). Ecohydrology of water-controlled ecosystems: Soil moisture and plant dynamics. Cambridge: Cambridge University Press.Google Scholar
  41. Roth, K. (1995). Steady state flow in an unsaturated, two-dimensional, macroscopically homogeneous, miller-similar medium. Water Resources Research, 31, 2127–2140.CrossRefGoogle Scholar
  42. Shaver, T. M., Peterson, G. A., & Sherrod, L. A. (2003). Cropping intensification in dryland systems improves soil physical properties: regression relations. Geoderma, 116(1-2), 149–164.Google Scholar
  43. Sichardt, W. (1930). Erfahrungen mit der chemischen Bodenverfestigung und Anwendungsmöglichkeiten des Verfahrens. Bautechnik, p. 181.Google Scholar
  44. Wada, Y., van Beek, L. P., van Kempen, C. M., Reckman, J. W., Vasak, S., & Bierkens, M. F. (2010). Global depletion of groundwater resources. Geophysical Research Letters, 37(20).Google Scholar
  45. Waston, I. (1995). In I. Watson & A. D. Burnett (Eds.), Hydrology: an environmental approach: theory and applications of ground water and surface water for engineers and geologists (Vol. xvi). Boca Raton: CRC Press 702 p. ISBN 1566700876.Google Scholar
  46. WWAP (2009). United Nations World Water Assessment Programme. The World Water Development Report, 1.Google Scholar
  47. Xiong, Y. (2014). Flow of water in porous media with saturation overshoot: a review. Journal of Hydrology, 510, 353–362.CrossRefGoogle Scholar
  48. Yi, L. I., Xin, R. E. N., Robert, H. I. L. L., Malone, R., & Ying, Z. H. A. O. (2018). Characteristics of water infiltration in layered water-repellent soils. Pedosphere, 28, 775–792.CrossRefGoogle Scholar
  49. Zaidi, F. K., Nazzal, Y., Ahmed, I., Naeem, M., & Jafri, M. K. (2015). Identification of potential artificial groundwater recharge zones in Northwestern Saudi Arabia using GIS and Boolean logic. Journal of African Earth Sciences, 111, 156–169.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Water Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Hydrology DepartmentDesert Research CentreCairoEgypt
  3. 3.Department of Hydrology and Water Resources Management, Faculty of Meteorology, Environment and Arid Land AgricultureKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.SGSRC, Department of Geology and Geophysics, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations