Biotic interaction as the triggering factor for blooms under favourable conditions in tropical estuarine systems

  • Samiksha Prabhudessai
  • C. R. Vishal
  • C. U. RivonkerEmail author


The formation of harmful algal blooms (HABs) in the marine environment is detrimental to the ecosystem function affecting the sequence of biological events. Hence, the present study is focused on the seasonal distribution of HAB-forming diatoms and dinoflagellates and their ecological interactions in two tropical estuaries, namely Chapora and Sal in the west coast of India. A total of 17 species of diatoms belonging to nine genera and 13 species of dinoflagellates belonging to eight genera were recorded from the present study (monsoon and non-monsoon season). The redundancy analysis (RDA) revealed that the salinity and phosphate concentration influence the distribution of HAB-forming diatoms and dinoflagellates in both the estuaries. Out of 13 species of dinoflagellates observed, six species are known as potentially toxic such as Alexandrium minutum, A. tamarense, A. pseudogonyaulax, Cochlodinium polykrikoides, Prorocentrum micans and Gonyaulax spinifera. Among these estuaries, Sal was represented with a high diversity of toxic species, associated with high phosphate and nitrate content in the water column. Further, the results indicate that the bloom of A. minutum suppressed the growth of other species of diatoms and dinoflagellates, suggesting its possible allelopathic effect.


Harmful algal blooms Toxic Dinoflagellates Diatoms Tropical estuary 



A special thanks is due to Dr. Mangesh Gauns; SP is also thankful to Gobardhan Sahoo and other colleagues from the National Institute of Oceanography, to Dona Paula for their help in teaching statistical methods and to Goa University for providing the research studentship.

Funding information

The authors are grateful to the Centre for Marine Living Resources and Ecology (CMLRE) for funding a project entitled HAB-Monitoring (Mangalore to Goa).


  1. Alkawri, A. A. S., & Ramaiah, N. (2010). Spatio-temporal variability of dinoflagellate assemblages in different salinity regimes in the west coast of India. Harmful Algae, 9(2), 153–162.CrossRefGoogle Scholar
  2. Anderson, D. M., Gilbert, P. M., & Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: nutrient sources, composition and consequences. Estuaries, 25, 704–726.CrossRefGoogle Scholar
  3. Baek, S. H., Shimode, S., Han, M., & Kikuchi, T. (2008). Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: the role of nutrients. Harmful Algae, 7, 729–739.CrossRefGoogle Scholar
  4. Bazin, P., Jouenne, F., Friedl, T., Cabanillas, A. F. D., Roy, B. L., & Veron, B. (2014). Phytoplankton diversity and community composition along the estuarine gradient of a temperate macrotidal ecosystem: combined morphological and molecular approaches. PLoS One, 9(4), e94110.CrossRefGoogle Scholar
  5. Bushaw-Newton, K. L., & Sellner, K. G. (1999). Harmful algal blooms. NOAA’s state of the coast report. US National oceanic and atmospheric administration, silver spring, Maryland. Accessed 24 Jan 2018.
  6. Ciotti, A. M., Odebrecht, C., Fillmann, G., & Moller, O. O. (1995). Outflow and subtropical convergence influence on phytoplankton biomass on the southern Brazilian continental-shelf. Continental Shelf Research, 15, 1737–1756.CrossRefGoogle Scholar
  7. Collos, Y., Vaquer, A., Laabir, M., Abadie, E., Laugier, T., Pastoureaud, A., & Souchu, P. (2007). Contribution of several nitrogen sources to growth of Alexandrium catenella during blooms in Thau lagoon, southern France. Harmful Algae, 6(6), 781–789.CrossRefGoogle Scholar
  8. Cupp, E. E. (1943). Marine plankton diatoms of the west coast of North America. Berkeley, California: University of California Press.Google Scholar
  9. D’Silva, M. S., Anil, A. C., Naik, R. V., & D’Costa, P. M. (2012). Algal blooms: a perspective from the coasts of India. Natural Hazards, 63, 1225–1253.CrossRefGoogle Scholar
  10. Devassy, V. P., Bhattathiri, P. M. A., & Quasim, S. Z. (1979). Succession of organisms following Trichodesmium phenomenon. Indian Journal of Marine Sciences, 8, 89–93.Google Scholar
  11. Fernandes, B., & Achutankutty, C. T. (2010). Seasonal variation in fishery diversity of some wetlands of the Salcete Taluka Goa. Indian Journal of Marine Science, 39, 238–247.Google Scholar
  12. Fistarol, G. O., Legrand, C., Selander, E., Hummert, C., Stolte, W., & Graneli, E. (2004). Allelopathy in Alexandrium species: effect on a natural plankton community and on algal monocultures. Aquatic Microbial Ecology, 35(1), 45–56.CrossRefGoogle Scholar
  13. Franco, J. M., Fernandez, P., & Reguera, B. (1994). Toxin profiles of natural populations and cultures of Alexandrium minutum Halim from Galician (Spain) coastal waters. Journal of Applied Phycology, 6, 275–279.CrossRefGoogle Scholar
  14. Fukuyo, Y., Yoshida, K., & Inoue, H. (1985). Protogonyaulax in Japanese coastal waters. In D. M. Anderson, A. W. White, & D. G. Baden (Eds.), Toxic dinoflagellates (pp. 27–32). New York: Elsevier.Google Scholar
  15. Fukuyo, Y. H., Takano, M., & Chihana & Matsuoka K. (1990). Red tide organisms in Japan: an illustrated taxonomic guide. Co. Ltd: Tokyo, Uchida Rokakuho.Google Scholar
  16. Glibert, P. M., Anderson, D. M., Gentien, P., Graneli, E., & Sellner, K. G. (2005). The global complex phenomenon of harmful algal blooms. Oceanography, 18, 136–147.CrossRefGoogle Scholar
  17. Graneli, E., & Johansson, N. (2003). Effects of the toxic haptophyte Prymnesium parvum on the survival and feeding of a ciliate: the influence of different nutrient conditions. Marine Ecology Progress Series, 254, 49–56.CrossRefGoogle Scholar
  18. Graneli, E., Weberg, M., & Salomon, P. S. (2008). Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae, 8, 94–102.CrossRefGoogle Scholar
  19. Grasshoff, K., Kremling, K., & Ehrhardt, M. (1999). Methods of seawater analysis. Wiley-VCH Verlag GmbH: Third Edition.CrossRefGoogle Scholar
  20. Hallegraeff, G. M. (1991). Aquaculturists’ guide to harmful Australian microalgae. Hobart, Tasmania, Australia: Fishing industry training board of Tasmania: CSIRO Division of Fisheries.Google Scholar
  21. Hallegraeff, G. A. (1993). A review of harmful algal blooms and their apparent global increase. Phycologia, 32, 79–99.CrossRefGoogle Scholar
  22. Hallegraeff, G. M., Steffensen, D. A., & Wetherbee, R. (1988). Three estuarine Australian dinoflagellates that can produce paralytic shellfish toxins. Journal of Plankton Research, 10, 533–541.CrossRefGoogle Scholar
  23. Horstman, D. A. (1981). Reported red water outbreaks and their effects on fauna of the west and south coasts of South Africa 1959–1980. Fishery Bulletin South Africa, 15, 71–88.Google Scholar
  24. Huang, L., Jian, W., Song, X., Huang, X., Liu, S., Qian, P., Yin, K., & Wu, M. (2004). Species diversity and distribution for phytoplankton of the Pearl river estuary during rainy and dry seasons. Marine Pollution Bulletin, 49, 588–596.CrossRefGoogle Scholar
  25. Joseph, K. J., & Pillai, V. K. (1975). Seasonal and spatial distribution of phytoplankton in Cochin backwaters. Bulletin of the Department of Marine Sciences, University of Cochin, 7, 171–180.Google Scholar
  26. Labry, C., Le Denn, E. E., Chapelle, A., Fauchot, J., Youenou, A., Crassous, M. P., Le Grand, J., & Lorgeoux, B. (2008). Competition for phosphorus between two dinoflagellates: a toxic Alexandrium minutum and a non-toxic Heterocapsa triquetra. Journal of Experimental Marine Biology and Ecology, 358(2), 124–135.CrossRefGoogle Scholar
  27. Larsen, J., & Moestrup, O. (1989). Guide to toxic and potentially toxic marine algae. Copenhagen, Denmark: The fish inspection service, ministry of fisheries.Google Scholar
  28. Lelong, A., Haberkorn, H., Goic, N. L., Hégaret, H., & Soudant, P. (2011). A new insight into allelopathic effects of Alexandrium minutum on photosynthesis and respiration of the diatom Chaetoceros neogracile revealed by photosynthetic-performance analysis and flow cytometry. Microbial Ecology, 62, 919–930.CrossRefGoogle Scholar
  29. Lindsey, R., & Scott, M. (2010). What are phytoplankton? NASA Earth observatory. Accessed 25 Nov 2017.
  30. Loeblich, L. A., & Loeblich, A. R. (1975). The organism causing New England red tides: Gonyaulax excavata. In V. R. Lo Cicero (Ed.), Proceedings of the first International conference on toxic dinoflagellate blooms (pp. 207–224). Boston: Massachusetts Science and Technology Foundation.Google Scholar
  31. Matos, J. B., Sodre, D. K. L., da Costa, K. G., Pereira, L. C. C., & da Costa, R. M. (2011). Spatial and temporal variation in the composition and biomass of phytoplankton in an Amazonian estuary. Journal of Coastal Research, 64, 1525–1529.Google Scholar
  32. Maya, M. V., Soares, M. A., Agnihotri, R., Pratihary, A. K., Karapurkar, S., Naik, H., & Naqvi, S. W. A. (2011). Variation in some environmental characteristics including C and N stable isotopic composition of suspended organic matter in the Mandovi estuary. Environmental Monitoring and Assessment, 175, 501–517.CrossRefGoogle Scholar
  33. Moestrup, D., & Hansen, P. J. (1988). On the occurrence of the potentially toxic dinoflagellates Alexandrium tamarense (Gonyaulax excavata) and A. ostenfeldii in Danish and Faroese waters. Ophelia, 28, 195–213.CrossRefGoogle Scholar
  34. Mudadu, A. G., Lorenzoni, G., Bazzoni, A. M., Bazzardi, R., Tedde, G., Arras, I., Sanna, G., Santucciu, C., Marongiu, E., & Virgilio, S. (2017). Yessotoxin detection in bivalve molluscs: a case study from coastal mussel farms (Sardinia, Italy). Italian Journal of Food Safety, 6, 7015.Google Scholar
  35. Narale, D. D., & Anil, A. C. (2017). Spatial distribution of dinoflagellates from the tropical coastal waters of the South Andaman, India: implications for coastal pollution monitoring. Marine Pollution Bulletin, 115(1–2), 498–506.CrossRefGoogle Scholar
  36. Ogata, T., & Kodama, M. (1986). Ichthyotoxicity found in cultured media of Protogonyaulax species. Marine Biology, 92, 31–34.CrossRefGoogle Scholar
  37. Paerl, H. W. (1988). Nuisance phytoplankton blooms in coastal, estuarine and inland waters. Limnology and Oceanography, 33, 823–847.Google Scholar
  38. Parab, S. G., Matondkar, S. G. P., Gomes, H. D. R., & Goes, J. I. (2013). Effect of freshwater influx on phytoplankton in the Mandovi estuary (Goa, India) during monsoon season: Chemotaxonomy. Journal of Water Resources and Protection, 5, 349–361.CrossRefGoogle Scholar
  39. Patil, J. S., & Anil, A. C. (2011). Variations in phytoplankton community in a monsoon influenced tropical estuary. Environmental Monitoring and Assessment, 182, 291–300.CrossRefGoogle Scholar
  40. Pednekar, S. M., Prabhu Matondkar, S. G., Gomes, H. D. R., Goes, J. I., Parab, S., & Kerkar, V. (2011). Fine-scale responses of phytoplankton to freshwater influx in a tropical monsoonal estuary following the onset of southwest monsoon. Journal of Earth System Science, 120(3), 545–556.CrossRefGoogle Scholar
  41. Pednekar, S. M., Matondkar, S. G. P., & Kerkar, V. (2012, 2012). Spatio-temporal distribution of harmful algal flora in the tropical estuarine complex of Goa, India. The Scientific World Journal, 1–11.Google Scholar
  42. Pednekar, S. M., Kerkar, V., & Prabhu Matondkar, S. G. (2014). Spatiotemporal distribution in phytoplankton community with distinct salinity regimes along the Mandovi estuary, Goa, India. Turkish Journal of Botany, 38, 800–818.CrossRefGoogle Scholar
  43. Pinto, J. S., & Silva, E. S. (1956). The toxicity of Cardium edule L. and its possible relation to the dinoflagellate Prorocentrum micans. Instituto de Biologia Maritima, 12, 1–20.Google Scholar
  44. Pradhan, U. K., & Shirodkar, P. V. (2009). Assessment of the impact of developmental activities on estuarine environments of Mandovi and Zuari rivers of Goa along the west coast of India, in Proceedings of the International Conference in Ocean Engineering, (ICOE’09). Chennai, India: IIT Madras.Google Scholar
  45. Pradhan, U. K., & Shirodkar, P. V. (2011). Assessment of the impact of developmental activities on estuarine environments of Mandovi and Zuari rivers of Goa along the west coast of India. Journal of Shipping and ocean Engineering, 1, 191–206.Google Scholar
  46. Quinlan, E. L., & Philips, E. J. (2007). Phytoplankton assemblages across the marine to low-salinity transition zone in a black water dominated estuary. Journal of Plankton Research, 29, 401–416.CrossRefGoogle Scholar
  47. Rhodes, L., Mcnabb, P., de Salas, M., Briggs, L., Beuzenberg, V., & Gladstone, M. (2006). Yessotoxin production by Gonyaulax spinifera. Harmful Algae, 5, 148–155.CrossRefGoogle Scholar
  48. Richardson, K. (1997). Harmful or exceptional phytoplankton blooms in the marine ecosystem. In J. H. S. Blaxter & A. J. Southworth (Eds.), Advances in marine biology (pp. 302–386). San Diego, California: Academic Press.Google Scholar
  49. Richardson, K., & Jorgensen, B. B. (1996). Eutrophication: definition, history and effects. In B. B. Jorgensen & K. Richardson (Eds.), Eutrophication in coastal marine ecosystems (pp. 1–9). Washington: American Geophysical Union.Google Scholar
  50. Rizvi, S. J. H., & Rizvi, V. (1992). Allelopathy: basic and applied aspects. London: Chapman & Hall Editors.CrossRefGoogle Scholar
  51. Sahu, G., Satpathy, K. K., Mohanty, A. K., & Sarkar, S. K. (2012). Variations in community structure of phytoplankton in relation to physicochemical properties of coastal waters, southeast coast of India. Indian Journal of Geo-Marine Sciences, 41(3), 223–241.Google Scholar
  52. Sarojini, Y., & Sarma, N. S. (2001). Vertical distribution of phytoplankton around Andaman and Nicobar Islands, Bay of Bengal. Indian Journal of Marine Sciences, 30, 65–69.Google Scholar
  53. Sawant, S., & Madhupratap, M. (1996). Seasonality and composition of phytoplankton in the Arabian Sea. Current Science, 71, 869–873.Google Scholar
  54. Shetye, S. R., Shankar, D., Neetu, S., Suprit, K., Michael, G. S., & Chandramohan, P. (2007). The environment that conditions the Mandovi and Zuari estuaries. In S. R. Shetye, D. Kumar & D. Shankar (Eds.), The Mandovi and Zuari Estuaries (p. 3). National Institute of Oceanography, Goa, India.Google Scholar
  55. Smayda, T. J. (1998). Ecophysiology and bloom dynamics of Heterosigma akashiwo (Raphidophyceae). In M. Anderson, A. D. Cembella, & G. M. Hallegraeff (Eds.), Physiological ecology of harmful algal blooms (pp. 113–131). Berlin: Springer.Google Scholar
  56. Smayda, T. J., & Reynolds, C. S. (2003). Strategies of marine dinoflagellate survival and some rules of assembly. Journal of Sea Research, 49(2), 95–106.CrossRefGoogle Scholar
  57. Tillmann, U., & John, U. (2002). Toxic effects of Alexandrium species on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Marine Ecology Progress Series, 23, 47–58.CrossRefGoogle Scholar
  58. Tomas, C. R. (1997). Identifying marine phytoplankton. California: Academic Press.Google Scholar
  59. Vitousek, P. M., Aber, J., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., & Tilman, G. D. (1997). Human alteration of the global nitrogen cycle: causes and consequences. Ecological Applications, 7, 737–750.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Samiksha Prabhudessai
    • 1
  • C. R. Vishal
    • 1
  • C. U. Rivonker
    • 1
    Email author
  1. 1.Department of Marine SciencesGoa UniversityTaleigao PlateauIndia

Personalised recommendations