Advertisement

Drastic difference in cadmium concentration in mussels (Mytilus chilensis) observed between seasons in natural bed and aquaculture systems in Chile

  • J. Max BlancEmail author
  • Carlos Molinet
  • Patricio A. Díaz
  • Ricardo Subiabre
  • Marco Salamanca
  • Jaclyn Duemler
Article
  • 53 Downloads

Abstract

Globally, Chile is the second largest producer of mussels, with 99% of production concentrated in the inland sea of the Los Lagos Region, Southern Chile. This study reveals that seasons produce a drastic difference in the cadmium concentration (Cd) in marine mussels in bay, channel, and fjord ecosystems in this area. As the global mussel industry continues its rapid expansion, a complete understanding of cadmium pathways is critical in order to minimize the cadmium content in harvests. In this study, biweekly sampling was conducted in Chiloé (Southern Chile), during five consecutive seasons from June 2014 to November 2015. Cadmium in the soft tissues (ST) and in the content of the digestive gland (CDG) of Mytilus chilensis were investigated, in addition to resuspensions and seston to determine the effect of the seasons on metal bioassimilation capacity. In spring, the (Cd) between CDG and ST varied by approximately 2 mg Cd kg−1 dry mass (DM). In summer and autumn, the (Cd) in CDG increased from 3 to 6 mg Cd kg−1 while the (Cd) in ST decreased from 2.5 to 1.5 mg Cd kg−1 DM. The three ecosystems showed the same cadmium bioconcentration trends in all seasons, revealing coherent global trends. These findings should caution the industry and coastal populations about the seasonal variability and intensity of cadmium metal transfer to biofilters, especially because of the adverse effects of cadmium consumption on human health. Additionally, this study found that mussels in natural beds concentrate more Cd (> 1 mg Cd kg−1 DM) than in industrial facilities. Multiregression analysis showed and explained the cadmium in CDG for three ecosystems: channel (R2 0.9537), bay (R2 0.5962), and fjord (R2 0.4009). The independent variable nocturnal seston was able to explain the increase in cadmium.

Keywords

Mussel Cadmium Marine sediments Resuspension events Seasons 

Notes

Acknowledgments

We would like to thank CERAM laboratory at the Universidad Austral de Chile. We are also grateful to the Orizon S. A and Camanchaca S.A. companies, both associated with AMI-Chile AG, for the use of their farms for this study. Thanks also given to Dr. Cristelle Caplat and Dr. Olivier Richard of SMEL (Synergie Mer Littoral) Caen University and Normandy University (France) and Dr. Lionel Dennis, Directeur de la Station Marine de Wimereaux de la Université de Lille (France) for exchange of technical and scientific information. We would also like to recognize the Laboratory of Chemical Oceanography (Universidad de Concepción-Chile) for the cadmium analysis.

Funding information

Dr. J. Max Blanc was supported by project PAI781301009, National Commission for Scientific and Technological Research (CONICYT), Chile. Dr. Patricio A. Díaz is funded by Project PAI79160065, CONICYT, Chile.

Supplementary material

10661_2018_7169_MOESM1_ESM.docx (60 kb)
ESM 1 (DOCX 60 kb)
10661_2018_7169_MOESM2_ESM.docx (71 kb)
ESM 2 (DOCX 71 kb)
10661_2018_7169_MOESM3_ESM.docx (57 kb)
ESM 3 (DOCX 56 kb)
ESM 4

(MP4 45,571 kb)

References

  1. Adami, G., Barbieri, P., Fabiani, M., Piselli, S., Predonzani, S., & Reisenhofer, E. (2002). Levels of cadmium and zinc in hepatopancreas of reared Mytilus galloprovincialis from the Gulf of Trieste (Italy). Chemosphere, 48, 671–677.CrossRefGoogle Scholar
  2. Adams, W. J., Blust, R., Borgmann, U., Brix, K. V., DeForest, D. K., Green, A. S., Meyer, J. S., McGeer, J. C., Paquin, P. R., Rainbow, P. S., & Wood, C. M. (2011). Utility of tissue residues for predicting effects of metals on aquatic organisms. Integrated Environmental Assessment and Management, 7(1), 75–98.CrossRefGoogle Scholar
  3. Ali, M., & Taylor, A. (2010). The effect of salinity and temperatura on the uptake of cadmium and zinc by the common blue mussel, Mytilus edulis with some notes on their survival. Mesopotamian Journal of Marine Science, 25(1), 11–30.Google Scholar
  4. Aneiros, F., Moreira, J., & Troncoso, J. S. (2014). A functional approach to the seasonal variation of benthic mollusc assemblages in a estuarine-like system. Journal of Sea Research, 85, 73–84.CrossRefGoogle Scholar
  5. Apeti, D. A., Lauenstein, G. G., & Riedel, G. F. (2009). Cadmium distribution in coastal sediments and mollusks of the US. Marine Pollution Bulletin, 58, 1016–1024.CrossRefGoogle Scholar
  6. Azpeitia, K., Ferrer, L., Revilla, M., Pagaldai, J., & Mendiola, D. (2016). Growth, biochemical profile, and fatty acid composition of mussel (Mytilus galloprovincialis LmK.) cultured in the open ocean of the Bay of Biscay (North Spain). Aquaculture, 454, 95–108.CrossRefGoogle Scholar
  7. Baeyens, W., Gao, Y., De Galan, S., Bilau, M., Van Larebeke, N., & Leermakers, M. (2009). Dietary exposure to total and toxic arsenic in Belgium: Importance of arsenic speciation in North Sea fish. Molecular Nutrition & Food Research, 53(5), 558–568.CrossRefGoogle Scholar
  8. Behrenfeld, M. J., & Falkowski, P. G. (1997). Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography, 42, 1–20.CrossRefGoogle Scholar
  9. Bezuidenhaout, J., Dames, N., Botha, A., Frontasyeva, M. V., Goryainova, Z. I., & Pavlov, D. (2015). Trace elements in Mediterranean Mussels Mytilus galloprovincialis from the South African West Coast. Ecological Chemistry and Engineering S, 22(4), 489–498.CrossRefGoogle Scholar
  10. Blanc, J. M., & Enriquez, R. (2013). Análisis de potenciales fuentes de cadmio y zinc en el ecosistema del mar interior X y XI Región, Chile. IV Congreso Nacional de Acuicultura. Sociedad Chilena de Acuicultura (SCHA). Universidad Austral de Chile. Enero 2013.Google Scholar
  11. Blanc, J. M., Molinet, C., & Díaz, P. A. (2017). Concentración de Cd en columna de agua y sedimento en el mar interior de Chiloé con reconocimiento de las especies fitoplanctónicas presentes. II Seminario de la Investigación Aplicada a la Mitilicultura Castro, Mayo 2017.Google Scholar
  12. Borsa, P., Rolland, V., & Daguin-Thiébaut, C. (2012). Genetics and taxonomy of Chilean smooth-shelled mussels, Mytilus spp. (Bivalvia: Mytilidae). Comptes Rendus Biologies, 335, 51–61.CrossRefGoogle Scholar
  13. Calbet, A., & Landry, M. (2004). Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnology and Oceanography, 49(1), 51–57.CrossRefGoogle Scholar
  14. Canli, M., & Furness, R. (1995). Mercury and cadmium uptake from seawater and from food by the Norway lobster Nephrops norvegicus. Environmental Toxicology and Chemistry, 14(5), 819–828.CrossRefGoogle Scholar
  15. Cassis, D., Lekhi, P., Pearce, C. M., Ebell, N., Orians, K., & Maldonado, M. T. (2016). The role of phytoplankton in the modulation of dissolved and oyster cadmium concentrations in Deep Bay, British Columbia, Canada. Science of the Total Environment, 409, 4415–4424.CrossRefGoogle Scholar
  16. Chamberlain, J., Fernandes, T. F., & Read, P. (2001). Impacts of biodeposits from suspended mussel (Mytilus edulis L.) culture on the surrounding surficial sediments. Journal of Marine Science, 58, 411–416.Google Scholar
  17. Chou, C. L., Paon, L. A., Moffatt, J. D., & Zwicker, B. (2000). Copper contamination and cadmium, silver, and zinc concentrations in the digestive glands of American lobster (Homarus americanus) from the Inner Bay of Fundy, Atlantic Canada. Bulletin of Environmental Contamination and Toxicology, 65, 470–477.CrossRefGoogle Scholar
  18. Chou, C. L., Paon, L. A., Moffatt, J. D., & King, T. (2003). Selection for bioindicators for monitoring marine environmental quality in the Bay of Fundy, Atlantic Canada. Marine Pollution Bulletin, 46, 756–762.CrossRefGoogle Scholar
  19. Claisse, D. (1992). Accumularion des métaux lourds et polluants organiques par les coquillages. Coquillages et santé publique – Du risque à la prévention. Coordination Jean Lesne. Edictions Ecole Nationale de la Santé Publique 1992 ISBN:2-85952-568-8. Deuxiéme partie. Chapitre VI, pp. 99–111.Google Scholar
  20. Colombo, J., Varisco, M., Isola, T., Crovetto, C., Rost, E., & Risso, S. (2016). Composición química proximal y perfil de ácidos grasos del mejillón Mytilus edulis provenientes de cultivos y bancos naturales en el Golfo San Jorge, Argentina. Revista de Biología Marina y Oceanografía, 51(2), 293–299.Google Scholar
  21. Cook, M. E., & Marrow, H. (1995). Anthropogenic sources of cadmium in Canada. National Workshop on Cadmium Transport into Plants. Canadian Network of Toxicology Centres, Ottawa, Ontario, Canada. June 20–21, 1995.Google Scholar
  22. Cornellier, P. (2010). Cinétique de bioaccumulations et distirbution tissulaire du Cadmium-109 par la nourriture et par Éau Chez le Pétoncle Géant (Placopecten Magennanicus) et le Pétoncle d’Islande (Chlamys inslandica). Rimouski: Université du Quebec á Rimouski.Google Scholar
  23. Cossa, D. (1989). A review of the use of Mytilus spp. as quantitative indicators of cadmium and mercury contamination in coastal waters. Oceanologica Acta, 12(4), 417–432.Google Scholar
  24. Dallinguer, R. (1995). Metabolism and toxicity of metals: Metallotioneins. In M. P. Cajaraville (Ed.), Cell Biology in Environmental Toxicity (pp. 171–190). Bilbao: Universidad Pais Vasco Press Service.Google Scholar
  25. Danovaro, R., Gambi, C., Luna, G. M., & Mirto, S. (2004). Sustainable impact of mussel farming in the Adriatic Sea (Mediterranean Sea): Evidence from biochemical, microbial and meiofaunal indicators. Marine Pollution Bulletin, 49, 325–333.CrossRefGoogle Scholar
  26. Davenport, J., Smith, R. J. J. W., & Packer, M. (2000). Mussels Mytilus edulis: Significant consumers and destroyers of mesozooplankton. Marine Ecology Progress Series, 198, 131–137.CrossRefGoogle Scholar
  27. De los Ríos, A., Echavarri-Erasun, B., Lacorte, S., Sánchez-Ávila, J., De Jonge, M., Blust, R., et al. (2016). Relationships between lines of evidence of pollution in estuarine areas: Linking contaminant levels with biomarker responses in mussels and with structure of macroinvertebrate benthic communities. Marine Environmental Research, 121, 49–63.CrossRefGoogle Scholar
  28. Díaz, P., Molinet, C., Cáceres, M., & Valle-Levinson, A. (2011). Seasonal and intratidal distribution of Dinophysis spp. in a Chilean fjord. Harmful Algae, 10(2), 155–164.CrossRefGoogle Scholar
  29. Dolmer, P. (2000a). Algal concentration profiles above mussel beds. Journal of Sea Research, 43, 113–119.CrossRefGoogle Scholar
  30. Dolmer, P. (2000b). Feeding activity of mussels Mytilus edulis related to near-bed currents and phytoplankton biomass. Journal of Sea Research, 44, 221–231.CrossRefGoogle Scholar
  31. EC. (2006). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Communities, L364(/365).Google Scholar
  32. EPA (1982). Aquatic fate process data for organic priority pollutants. Final Report. US Environmental Protetion Agency (EPA).Google Scholar
  33. EPA (1996). Soil screening guidance: Technical background document. United States Environmental Protection Agency. EPA/540/R95/128.Google Scholar
  34. EPA (2016). Aquatic life ambient water quality criteria Cadmium. US Environmental Protection Agency. EPA-820-R-16-002 March 2016.Google Scholar
  35. Eugene Ng, Y. J., Yap, C. K., Zakaria, M. P., & Tan, S. G. (2013). Assestment of heavy metal pollution in the straits of Johore by using transplanted caged mussel, Perna viridis. Pertanika Journal of Science and Technology, 21(1), 75–96.Google Scholar
  36. Fabi, B., Manoukian, S., & Spagnolo, A. (2009). Impact of an open-sea suspended mussel culture on macrobenthic community (Western Adriatic Sea). Aquaculture, 289, 54–63.CrossRefGoogle Scholar
  37. FAO (2017). Aquaculture zoning, site selection and area management under the ecosystem approach to aquaculture. A handbook. Rome.Google Scholar
  38. FAO (2018). GlobeFish highlights. A quarterly update on world seafoods markets. January 2018 ISSUE, with Jan-Sept 2017 Statistics. ISBN 978-92-5-130349-8.Google Scholar
  39. Fialkowski, W., Fialkowska, E., Smith, B., & Rainbow, P. S. (2003). Biomonitoring survey of trace metal pollution in streams of a catchment draining a zinc anf Lead mining area of upper Silesia, Poland using the amphipod Gammarus fossarum. International Review of Hidrobiology, 88(2), 187–200.CrossRefGoogle Scholar
  40. Filgueira, R., Comeau, L. A., Landry, T., Grant, J., Guyonder, T., & Mallet, A. (2013). Bivalve condition index as an indicator of aquaculture intensity: A metal-analysis. Ecological Indicators, 25, 215–229.CrossRefGoogle Scholar
  41. Fisher, H. (1988). Mytilus edulis as a quantitative indicator of dissolved cadmium. Final study and synthesis. Marine Ecology Progress Series, 48, 163–174.CrossRefGoogle Scholar
  42. Gabr, H. R., Ali, A.-F., & Gab-Alla, A. (2008). Effect of transplantation on heavy metal concentrations in commercial clams of Lake Timsah, Sues Canal, Egyt. Oceanología, 50(1), 83–93.Google Scholar
  43. Gargett, A., & Marra, J. (2002). Effects of upper ocean physical processes (turbulence, advection and air-sea interaction) on oceanic primary production. In A. R. Robinson, J. J. McCarthy, & B. J. Rothschild (Eds.), The sea (Vol. 12, pp. 19–49). New York: Wiley.Google Scholar
  44. Giarratano, E., & Amin, O. A. (2010). Heavy metals monitoring in the southernmost mussel farm of the world (Beagle Channel, Argentina). Ecotoxicology and Environmental Safety, 73, 1378–1384.CrossRefGoogle Scholar
  45. Giarratano, E., Duarte, C. A., & Amin, O. A. (2010). Biomarkers and heavy metal bioaccumulation in mussels transplanted to coastal waters of the Beagle Channel. Ecotoxicology and Environmental Safety, 73, 270–279.CrossRefGoogle Scholar
  46. Giarratano, E., Gil, M., & Malanga, G. (2013). Assessment of antioxidant responses and trace metal accumulation by digestive gland of ribbed mussel Aulacomya atra atra from Northern Patagonia. Ecotoxicology and Environmental Safety, 92, 39–50.CrossRefGoogle Scholar
  47. Granados, M., Fussmann, G. F., & Plourde, S. (2011). The contrasting differences in zooplankton community composition and abundance between aquaculture (mussel farm) and control site in the Havre-aux-Maisons lagoon, Q.C. Aquaculture Canada 2011. AAC Spec. Publ. N°20. Google Scholar
  48. Hackbarth, T. (2000). Bioavailability of metals from stormwater ponds and their accumulation in aquatic organisms. Ontario: Queen’s University Kingston.Google Scholar
  49. Hakspiel-Segura, C., Martinez-Lopez, A., Pinedo-Gonzalez, P., Verdugo-Diaz, G., & Acevedo-Acosta, J. D. (2016). Composition of metals in suspended particulate matter of Alfonso basin, southern Gulf of California. Regional Studies in Marine Science, 3, 144–153.CrossRefGoogle Scholar
  50. Jensen, A., & Bro-Rasmussen, F. (1992). Environmental cadmium in Europe. Reviews of Environmental Contamination and Toxicology, 125, 101–181.Google Scholar
  51. Jiann, K. T., & Presley, B. J. (1997). Variations in trace metal concentrations in American oysters (Crassostrea virginica) collected from Gaveston Bay, Texas. Estuaries, 20(4), 710–724.CrossRefGoogle Scholar
  52. Ju, Y., Chen, W. Y., Singh, S., & Liao, C. M. (2011). Trade-offs between elimination and detoxification in rainbow trout and common bivalve molluscs exposed to metal stressors. Chemosphere, 85, 1048–1056.CrossRefGoogle Scholar
  53. Kefi, F. J., Mleiki, A., Béjaoui, J. M., & El Menif, N. T. (2016). Seasonal variations of trace metal concentrations in the soft tissue of Lithofaga Lithofaga collected from the Bizerte Bay (Northern Tunisia, Mediterranean Sea). Journal of Aquaculture Research & Development, 7(6), 1000432.Google Scholar
  54. Klöckner, K. (1979). Uptake and accumulation of cadmium by Ophryotrocha diadema (Polychaeta). Marine Ecology Progress Series, 1, 71–79.CrossRefGoogle Scholar
  55. Lane, E. S. (2007). The interaction between cadmium and Iron in marine phytoplankton. Vancouver: The University of British Columbia.Google Scholar
  56. Lane, T. W., & Morel, F. M. (2000). A biological function for cadmium in marine diatoms. Proceeding of the National Academy of Sciences of the United States of America, 97, 4627–4631.CrossRefGoogle Scholar
  57. Lawrence, S. G., Holoka, M. H., Hunt, R. V., & Hesslein, R. H. (1996). Multi-year experimental additions of cadmium to a lake epilimnion and resulting wáter column cadmium concentrations. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1876–1887.CrossRefGoogle Scholar
  58. LeBlanc, G. (1984). Interspecies relationhips in acute toxicity of chemicals to aquatic organims. Environmental Toxicology and Chemistry, 3, 47–60.CrossRefGoogle Scholar
  59. LeBlanc, A. R., Bourque, D., Landry, T., Davidson, J., & MacNair, N. G. (2007). The predation of zooplankton by the blue mussel (Mytilus edulis) and the clubeed tunicate (Styela clava). Canadian Technical Report of Fisheries and Aquatic Sciences, 2684(2684), 18.Google Scholar
  60. Lehane, C., & Davenport, J. (2004). Ingestion of bivalve larvae by Mytilus edulis: Experimental and field demonstrations of larviphagy in farmed blue mussels. Marine Biology, 145, 101–107.CrossRefGoogle Scholar
  61. Lekhi, P., Cassis, D., Pearce, C. M., Ebell, N., Maldonado, M. T., & Orians, K. J. (2008). Role of dissolved and particulate cadmium in the accumulation of cadmium in cultured oysters (Crassostrea gigas). Science of the Total Environment, 393, 309–325.CrossRefGoogle Scholar
  62. Lembeye, G. (2008). Harmful algal blooms in the austral Chilean channels and fjords. In N. Silva & S. Palma (Eds.), Progress in the oceanographic knowledge of Chilean interior waters, from Puerto Montt to Cape Horn (pp. 99–103). Valparaíso: Comité Oceanográfico Nacional - Pontificia Universidad Católica de Valparaíso.Google Scholar
  63. Maanan, M. (2008). Heavy metal concentrations in marine mollusks from the Moroccan coastal region. Environmental Pollution, 153, 176–183.CrossRefGoogle Scholar
  64. Mackay, E. A., Overnell, J., Dunbar, B., Davidson, I., Hunziker, O. E., Kägi, J. H., et al. (1993). Complete amino acid sequences of VIFe dimeric and four monomeric forms of metallothioneins form the edible mussel Mytilus edulis. European Journal of Biochemistry, 218, 183–194.CrossRefGoogle Scholar
  65. Mann, R. (1978). A Comparison of morphometric biochemical, and physiological indexes of condition in marine bivalve molluscs. Woods Hole: Woods Hole Oceanographic Institution.Google Scholar
  66. März, C., Meinhardt, A. K., Schetger, B., & Brumsack, H. J. (2015). Silica diagenesis and benthic fluxes in the Arctic Ocean. Marine Chemistry, 171, 1–9.CrossRefGoogle Scholar
  67. McGeer, J. C., Brix, K. V., Skeaff, J. M., DeForest, D. K., Brigham, S. I., Adams, W. J., & Green, A. (2003). Inverse relationship between bioconcentration fatcor and exposure concentration for metals: Implications for hazard assestment of metals in the aquatic environment. Environmental Toxicology and Chemistry, 22(5), 1017–1037.CrossRefGoogle Scholar
  68. McKindsey, C. W., Lecuona, M., Huot, M., & Weise, A. (2009). Biodeposit production and benthic loading by farmed mussels ans associated tunicate epifauna in Prince Edward Island. Aquaculture, 295, 44–51.CrossRefGoogle Scholar
  69. Mebane, C. A. (2006). Cadmium risks to freshwater life: Derivation and validation of low-effect criteria values using laboratory and field studies (version 1.2): U.S. Geological Survey Scientific Investigations Report 2006-5245. Revised September 2010, 130 p.Google Scholar
  70. Mebane, C. A. (2012). Acute toxicity of cadmium, lead, zinc and their mixtures to stream-resident fish and invertebrates. Environmental Toxicology and Chemistry, 31(6), 1334–1348.CrossRefGoogle Scholar
  71. Merzouki, M., Talib, N., & Sif, J. (2009). Índice de Condition et teneurs de quelques métaux (Cu, Cd, Zn et Hg) dans les organes de la moule Mytilus galloprovinciallis de la côte d’El Jadida (Maroc) en mai et juin 2004. Bulletin de l’Institute Scientifique, Rabat, Section Sciences de la Vie, 31(1), 21–26.Google Scholar
  72. Molinet, C., Soto, D., González, C., Figueroa, A. M., Guerra, G., & Díaz, M. (1999). Propuesta sobre protección de la calidad de aguas marinas de la XI región de Aysén. Informe Final. Valdivia: Universidad Austral de Chile.Google Scholar
  73. Mzoughi, N., & Chouba, L. (2012). Heavy metals and PAH assessment based on mussel caging in the north coast of Tunisia (Mediterranean Sea). International Journal of Environmental Research, 6(1), 109–118.Google Scholar
  74. Nardi, A., Mincarelli, L. F., Benedetti, M., Fattorin, D., d’Errico, G., & Regoli, F. (2017). Indirect effects of climate changes on cadmium bioavailability and biological effects in the Mediterranean mussel Mytilus galloprovincialis. Chemosphere, 169, 493–502.CrossRefGoogle Scholar
  75. Nassiri, Y., Wery, J., Mansot, J. L., & Ginsburger, T. (1997). Cadmium bioaccumulation in Tetraselmis suecica: An Electron Energy Loss Spectroscopy (EELS) study. Archives of Environmental Contamination and Toxicology, 33, 156–161.CrossRefGoogle Scholar
  76. Nielsen, T., & Maar, M. (2007). Effects of a blue mussel Mytilus edulis bed on vertical distribution and composition of the pelagic food web. Marine Ecology Progress Series, 389, 185–198.CrossRefGoogle Scholar
  77. Nordic Council of Ministers (2003). Cadmium review.C:/Documents and Settings/crl/Local Settings/Temporary Files/OLK46/No-Cadmium Review-NMR1.doc.Google Scholar
  78. Nunes, J. P., Ferreira, J. G., Bricker, S. B., O’Loan, B., Dabrowski, T., Dallaghan, B., et al. (2011). Towards an ecosystem approach to aquaculture: Assessment of sustainable shellfish cultivation at different scales of space, time and complexity. Aquaculture, 315, 369–383.CrossRefGoogle Scholar
  79. Nuñez-Nogueira, G., & Rainbow, P. S. (2005). Cadmium uptake and accumulation by the decapod crustacean Penaeus indicus. Marine Environment Research, 60, 339–354.CrossRefGoogle Scholar
  80. Olsen, L. M., Hernandez, K. L., Van Ardelan, M., Iriarte, J. L., Bizsel, K. C., & Olsen, Y. (2017). Responses in bacterial community structure to waste nutrients from aquaculture: An in situ microcosm experiment in a Chilean fjord. Aquaculture Environment Interactions, 9, 21–32.CrossRefGoogle Scholar
  81. Özden, O., Ulusoy, S., & Erkan, N. (2010). Study on the behavior of the trace metal and micro minerals in Mytilus galloprovincialis as a bioindicator species: The case of Marmara Sea, Turkey. Journal für Verbrauchersschutz und Lebensmittelt. Verbr. Lebensm, 5, 407–412.CrossRefGoogle Scholar
  82. Ozsuer, M., & Sunlu, U. (2013). Temporal trends of some trace metals in Lithophaga lithophaga (L., 1758) from Izmir Bay (Eastern Aegean Sea). Bulletin of Environmental Contamination and Toxicology, 91, 409–414.CrossRefGoogle Scholar
  83. Pan, J., Plant, J. A., Voulvoulis, N., Oates, C. J., & Ihlenfeld, C. (2010). Cadmium levels in Europe: Implications for human health. Environmental Geochemical Healthy, 32, 1–12.CrossRefGoogle Scholar
  84. Paraskevopoulou, V., Zeri, C., Kaberi, H., Chalkiadaki, O., Krasakopoulou, E., Dassenakis, M., & Scoullos, M. (2014). Trace metal variability, background levels and pollution status assessment in line with the water framework and Marine Strategy Framework EU Directives in the waters of a heavily impacted Mediterranean Gulf. Marine Pollution Bulletin, 87, 323–337.CrossRefGoogle Scholar
  85. Petersen, J., Nielsen, T. G., van Duren, L., & Maar, M. (2008). Depletion of plankton in a raft culture of Mytilus galloprovincialis in Ría de Vigo, NW Spain. I. Phytopankton. Aquatic Biology, 4, 113–125.CrossRefGoogle Scholar
  86. Phillips, N. E. (2005). Growth of filter-feeding benthic invertebrates from a region with variable upwelling intensity. Marine Ecology Progress Series, 295, 79–89.CrossRefGoogle Scholar
  87. Pleissner, D., Eriksen, N. T., Lundgreen, K., & Riisgard, H. U. (2012). Biomas composition of blue mussels, Mytilus edulis, is affected by living site and species of ingested microalgae. International Scholarly Research Network, 2012, 902152.Google Scholar
  88. Przytarska, J. E., Sokolowski, A., Wolowiez, M., Hummel, H., & Jansen, J. (2010). Comparison of trace metal bioavailabilities in European coastal waters using mussels from Mytilus edulis complex as biomonitors. Environmental Monitoring and Assessment, 166, 461–476.CrossRefGoogle Scholar
  89. R Development Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07-0, URL http://www.r-project.org/.
  90. Rocha, T. L., Gomes, T., Mestre, N. C., Cardoso, C., & Bebianno, M. J. (2015a). Tissue specific responses to cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis. Aquatic Toxicology, 169, 10–18.CrossRefGoogle Scholar
  91. Rocha, T. L., Gomes, T., Pinheiro, J. P., Sousa, V. S., Nunes, L. M., Teixeira, M. R., & Bebianno, M. J. (2015b). Toxicokinetics and tissue distribution of cadmium-based Quantum Dots in the marine mussel Mytilus galloprovincialis. Environmental Pollution, 204, 207–214.CrossRefGoogle Scholar
  92. Rocha, T. L., Gomes, T., Durigon, E. G., & Bebianno, M. J. (2016). Subcellular partitioning kinetics, metallothionein response and oxidative damage in the marine mussel Mytilus galloprovincialis exposed to cadmium-based quantum dots. Science of the Total Environment, 554-555, 130–141.CrossRefGoogle Scholar
  93. Rouane-Hacene, M. O. (2013). Biosurveillance de la qualité des eaux côtières du litoral occidental algérien, par le suivi des índices biologiques, de la biodisponibilité et la bioaccumulation des métaux lourds (Zn, Cu, Pb et Cd) chez la moule Mytilus galloprovincialis et l’oursin Paracentrotus lividus. Theses Doctorat en Biologie. Faculte des Sciences, Departament de Biologie. Universite D’Oran.Google Scholar
  94. Sakata, M., Yamada, M., Mitsunobu, S., & Senga, Y. (2012). Contribution of abiotic and biogenic particles to trace-metal composition of phytoplankton assemblages in seawater of Shimizu Port, Japan. Journal of Oceanography, 68, 807–813.CrossRefGoogle Scholar
  95. Schmoker, C., Hernandez-León, S., & Calbet, A. (2013). Microzooplankton grazing in the oceans: Impacts, data variability, knowledge gaps and future directions. Journal of Plankton Research, 35(4), 691–706.CrossRefGoogle Scholar
  96. Scholz, N. (1980). Accumulation, loss and molecular distribution of cadmium in Mytilus edulis. Helgoländer Meeresuntersuchungen, 33, 68–78.CrossRefGoogle Scholar
  97. Sivaperumal, P., Sankar, T. V., & Nair, P. G. (2007). Heavy metal concentrations in fish, shellfish and fish products from internal markets of India vis-vis international standards. Food Chemistry, 102(3), 612–620.CrossRefGoogle Scholar
  98. Sparks, C., Odendaal, J., & Snyman, R. (2014). An analysis of historical mussel watch programme data from the west coast of the Cape Peninsula, Cape Town. Marine Pollution Bulletin, 87, 374–380.CrossRefGoogle Scholar
  99. Sparks, C., Odendaal, J., & Snyman, R. (2017). Metal concentrations in interdital water and surface sediment along the west coast of the Cape, cape Peninsula, Cape Town, South Africa. Water SA Vol. 43. N° 1 January 2017.Google Scholar
  100. Spence, B. (2004). The determination of metals in environmental samples using the X series ICP-MS. Instructions for operation based on US EPA methods CLP ILM05.3D and SW-846 6020/6020A. ICP-MASA.Google Scholar
  101. Szefer, P., Frelek, K., Szefer, K., Lee, C. B., Kim, B. S., Warzocha, J., Zdrojewska, I., & Ciesielski, T. (2002). Distribution and relationships of trace metals in soft tissue, byssus and shells of Mytilus edulis trossulus from the southern Baltic. Environmental Pollution, 120, 423–444.CrossRefGoogle Scholar
  102. Texeira, I. (2009). Microzooplankton feeding impact in there different european coastal systems. Porto: Universidade do Porto.Google Scholar
  103. Tsangaris, C., Kaberi, H., & Catsiki, V. A. (2012). Metal levels in sediments and transplanted mussels in Pagassitikos Gulf (Aegean Sea, Eastern Mediterranean). Environmental Monitoring and Assessment, 185(7), 6077–6087.CrossRefGoogle Scholar
  104. Turkmen, M., & Ciminli, C. (2007). Determination of metals in fish and mussel species by inductively coupled plasma-atomic emission spectrometry. Food Chemistry, 103(2), 670–675.CrossRefGoogle Scholar
  105. Wallace, W. G., Lee, B.-G., & Luoma, S. N. (2003). Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Marine Ecology Progress Series, 249, 183–197.CrossRefGoogle Scholar
  106. Wang, W. X., Fisher, N. S., & Luoma, S. (1996). Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Marine Ecology Progress Series, 140, 91–113.CrossRefGoogle Scholar
  107. Wang, Z., Lu, X., & Zhang, K. (2016). Distribution and contamination of metals and biogenic elements in sediments from Zhifu Bay of the Yelow Sea, China. Journal of Environmental Sciences, 41, 6–15.CrossRefGoogle Scholar
  108. Warren, L. A., Tessier, A., & Hare, L. (1998). Modelling cadmium acummulation by benthic invertebrates in situ: The relative contributions of sediment and overlyng water reservoirs to organism cadmiun concentrations. Limmology and Oceanography, 43(7), 1442–1454.CrossRefGoogle Scholar
  109. WHO (1992). World Health Organization. Environmental health criteria 134-cadmium international programme on chemical safety (IPCS) monograph.Google Scholar
  110. Wong, W. H., & Levinton, J. S. (2004). Culture of the blue mussel Mytilus edulis (Linnaeus, 1758) fed both phytoplankton and zooplankton: A microcosm esperiment. Aquaculture Research, 35, 965–969.CrossRefGoogle Scholar
  111. Wong, W. H., & Levinton, J. S. (2006). The trofic linkage between zooplankton and benthic suspensión feeders: Direct evidence from analysis of bivalve faecal pellets. Marine Biology, 148, 799–805.CrossRefGoogle Scholar
  112. Wood, C. M., Farrel, A. P., & Brauner, C. J. (2012). Fish physiology: Homeostasis and toxicology of non-essential metals (Vol. 31B, ISBN:978-0-12-378634-0). Ontario: Academic.Google Scholar
  113. Yesudhason, P., Al-Busaidi, M., Al-Rhabi, W. A., Al-Walli, A. S., Al-Nakhaili, A. K., Al-Mazrooei, N. A., et al. (2013). Distribution patterns of toxic metals in the marine oyster Saccostrea cucullata from the Arabian Sea in Oman: Spatial, temporal, and size variations. SpringerPlus, 2(1), 282.CrossRefGoogle Scholar
  114. Zhang, W., Feng, H., Chang, J., Qu, J., Xie, H., & Yu, L. (2009). Heavy metal contamination in surface sediments of Yangtze River interdital zone: An assessment from different indexes. Environmental Pollution, 157, 1533–1543.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. Max Blanc
    • 1
    Email author
  • Carlos Molinet
    • 2
  • Patricio A. Díaz
    • 3
  • Ricardo Subiabre
    • 4
  • Marco Salamanca
    • 5
  • Jaclyn Duemler
    • 6
  1. 1.Programa de Doctorado en Ciencias de la AcuiculturaUniversidad Austral de ChilePuerto MonttChile
  2. 2.Programa de Investigación Pesquera and Instituto de AcuiculturaUniversidad Austral de ChilePuerto MonttChile
  3. 3.Centro i~mar and CeBiBUniversidad de Los LagosPuerto MonttChile
  4. 4.Centro de Docencia Superior en Ciencias BásicasUniversidad Austral de ChilePuerto MonttChile
  5. 5.Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  6. 6.Project CORFO INNOVA, COD. 17ITE1-76255SantiagoChile

Personalised recommendations