Advertisement

Assessment of natural radioactivity in coals and coal combustion residues from a coal-based thermoelectric plant in Bangladesh: implications for radiological health hazards

  • Md. Ahosan Habib
  • Triyono Basuki
  • Sunao Miyashita
  • Wiseman Bekelesi
  • Satoru Nakashima
  • Kuaanan Techato
  • Rahat Khan
  • Abdul Baquee Khan Majlis
  • Khamphe Phoungthong
Article
  • 110 Downloads

Abstract

To study the level of radioactivity concentrations from a coal-based power plant (Barapukuria, Bangladesh) and to estimate the associated radiological hazards, coal and associated combustion residuals from the power plant were analyzed by gamma-ray spectrometry with high-purity germanium (HPGe) detector. The results reveal that the mean radioactivity (Bq kg−1) concentrations in feed coal samples are 66.5 ± 24.2, 41.7 ± 18.2, 62.5 ± 26.3, and 232.4 ± 227.2 for U-238, Ra-226, Th-232, and K-40, respectively, while in coal combustion residuals (CCRs), they are 206.3 ± 72.4, 140.5 ± 28.4, 201.7 ± 44.7, and 232.5 ± 43.8, respectively. With the exception of K-40, all the determined natural radionuclides are considerably higher in the investigated feed coal and associated combustion residues as compared with the world soil and world coal mean activities. On the average, CCRs contains 3.10–3.37 times more natural radionuclides than the feed coal, except for K-40. The radioactivity of fly ash and bottom ash is fractionated, and ratio ranges from 1.40 to 1.57. The mean values of the radiological hazard indices in the coal and their associated residuals are 153.1 and 446.8 Bq kg−1 for radium equivalent activity, 0.41 and 1.21 for the external hazard index, 70 and 200.1 nGy h−1 for the absorbed gamma dose rate, 0.09 and 0.25 mSv year−1 for the annual effective dose rate, and 3.0 × 10−4 and 8.6 × 10−4 Sv−1 for the excess lifetime cancer risk, respectively, most of which exceed the UNSCEAR-recommended respective threshold limits. The outcome of this study suggests a potential radiological threat to the environment as well as to the health of occupational workers and nearby inhabitants from the examined samples.

Keywords

Coal-fired thermoelectric plant Bituminous coal Fly ash Bottom ash Radioactivity Radiological hazard indices 

Notes

Acknowledgements

The authors would like to acknowledge the Higher Education Research Promotion, Thailand’s Education Hub for Southern Region of ASEAN Countries (TEH-AC) (Contract No.: THE-AC014/2016); funds for Doctor of Philosophy program in Sustainable Energy Management, Faculty of Environmental Management, Graduate School, Prince of Songkla University, Thailand; and the authority of the Geological Survey of Bangladesh (GSB) for all other forms of support for this study. The authorities of BTPS and GSB are acknowledged for providing the necessary samples for this work.

Supplementary material

10661_2018_7160_MOESM1_ESM.doc (94 kb)
ESM 1 (DOC 94 kb)

References

  1. Ahamad, M. G. (2016). Local and imported coal-mix for coal-based power plants in Bangladesh. Energy Sources, Part B: Economics, Planning, and Policy, 11(10), 936–945.Google Scholar
  2. Ahamed, S., Monir, M. U., Biswas, P. K., & Khan, A. A. (2016). Investigation the risk of spontaneous combustion in Barapukuria coal mine, Dinajpur, Bangladesh. Journal of Geoscience and Environment Protection, 4(04), 74–79.Google Scholar
  3. Akhtar, A., & Kosanke, R. M. (2000). Palynomorphs of Permian Gondwana coal from borehole GDH-38, Barapukuria Coal Basin, Bangladesh. Journal of African Earth Sciences, 31(1), 107–117.Google Scholar
  4. Al-Masri, M. S., Haddad, K., Alsomel, N., & Sarhil, A. (2015). Neutron activation analysis of thermal power plant ash and surrounding area soils. Environmental Monitoring and Assessment, 187(8), 536.Google Scholar
  5. Amin, Y. M., Uddin Khandaker, M., Shyen, A. K. S. S., Mahat, R. H., Nor, R. M., & Bradley, D. A. (2013). Radionuclide emissions from a coal-fired power plant. Applied Radiation and Isotopes, 80, 109–116.Google Scholar
  6. Arbuzov, S. I., Volostnov, A. V., Rikhvanov, L. P., Mezhibor, A. M., & Ilenok, S. S. (2011). Geochemistry of radioactive elements (U, Th) in coal and peat of northern Asia (Siberia, Russian Far East, Kazakhstan, and Mongolia). International Journal of Coal Geology, 86(4), 318–328.Google Scholar
  7. Arbuzov, S. I., Maslov, S. G., Volostnov, A. V., Il’enok, S. S., & Arkhipov, V. S. (2012). Modes of occurrence of uranium and thorium in coals and peats of Northern Asia. Solid Fuel Chemistry, 46(1), 52–66.Google Scholar
  8. Asaduzzaman, K., Mannan, F., Khandaker, M. U., Farook, M. S., Elkezza, A., Amin, Y. B. M., Sharma, S., & Kassim, H. B. A. (2015). Assessment of natural radioactivity levels and potential radiological risks of common building materials used in Bangladeshi dwellings. PloS One, 10(10), e0140667.Google Scholar
  9. Atwood, D. A. (Ed.). (2013). Radionuclides in the environment (1st ed.p. 532). Somerset: Wiley.Google Scholar
  10. Aytekin, H., & Baldik, R. (2012). Radioactivity of coals and ashes from Çatalaǧzi coal-fired power plant in Turkey. Radiation Protection Dosimetry, 149(2), 211–215.Google Scholar
  11. Bakr, M. A., Rahman, Q. M. A., Islam, M. M., Islam, M. K., Uddin, M. N., Resan, S. A., Haider, M. J., Islam, M. S., Ali, M. W., Choudhury, M. E. A., Mannan, K. M., Anam, A. N. M. H. (1996). Geology and coal deposit of Barapukuria Basin, Dinajpur District, Bangladesh. Records of the Geological Survey of Bangladesh, v. 8(1). Government of the People’s Republic of Bangladesh.Google Scholar
  12. BBS (Bangladesh Bureau of Statistics). (2011). Dinajpiur District Statistics 2011 report, Bangladesh Bureau of Statistics, Statistics and Informatics Division, Ministry of Planning, Government of the People’s Republic of Bangladesh, Dhaka. http://www.bbs.gov.bd/. Accessed 02 Jan 2018.
  13. Bem, H., Wieczorkowski, P., & Budzanowski, M. (2002). Evaluation of technologically enhanced natural radiation near the coal-fired power plants in the Lodz region of Poland. Journal of Environmental Radioactivity, 61(2), 191–201.Google Scholar
  14. Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Physics, 48(1), 87–95.Google Scholar
  15. Bhangare, R. C., Ajmal, P. Y., Sahu, S. K., Pandit, G. G., & Puranik, V. D. (2011). Distribution of trace elements in coal and combustion residues from five thermal power plants in India. International Journal of Coal Geology, 86(4), 349–356.Google Scholar
  16. Bhangare, R. C., Tiwari, M., Ajmal, P. Y., Sahu, S. K., & Pandit, G. G. (2014). Distribution of natural radioactivity in coal and combustion residues of thermal power plants. Journal of Radioanalytical and Nuclear Chemistry, 300(1), 17–22.Google Scholar
  17. Bhuiyan, M. A., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010a). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173(1–3), 384–392.Google Scholar
  18. Bhuiyan, M. A., Islam, M. A., Dampare, S. B., Parvez, L., & Suzuki, S. (2010b). Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh. Journal of Hazardous Materials, 179(1–3), 1065–1077.Google Scholar
  19. Boukhair, A., Belahbib, L., Azkour, K., Nebdi, H., Benjelloun, M., & Nourreddine, A. (2016). Measurement of natural radioactivity and radon exhalation rate in coal ash samples from a thermal power plant. World Journal of Nuclear Science and Technology, 6, 153–160.Google Scholar
  20. Bowen, H. J. M. (1979). Environmental chemistry of the elements (p. 333). London, New York: Academic Press.Google Scholar
  21. BPDB (Bangladesh Power Development Board). (2017). Annual report 2016-17, Power Division, Ministry of Power, Energy and Mineral Recourses, Government of the People’s Republic of Bangladesh, Dhaka. http://www.bpdb.gov.bd/download/annual_report/AnnualReport2016-2017.pdf. Accessed 18 Feb 2018.
  22. Campaner, V. P., Luiz-Silva, W., Smoak, J. M., & Sanders, C. J. (2018). Radionuclide enrichment near coal processing in Southern Brazil. Radiochemistry, 60, 215–220.Google Scholar
  23. Cevik, U., Damla, N., & Nezir, S. (2007). Radiological characterization of Cayırhan coal-fired power plant in Turkey. Fuel, 86(16), 2509–2513.Google Scholar
  24. Cevik, U., Damla, N., & Nezir, S. (2008). Radiological characterization around the Afsin-Elbistan coal-fired power plant in Turkey. Energy and Fuels, 22(1), 428–432.Google Scholar
  25. Chen, J., Chen, P., Yao, D., Huang, W., Tang, S., Wang, K., Liu, W., Hu, Y., Li, Q., & Wang, R. (2017a). Geochemistry of uranium in Chinese coals and the emission inventory of coal-fired power plants in China. International Geology Review, 60(5–6), 621–637.Google Scholar
  26. Chen, J., Chen, P., Yao, D., Huang, W., Tang, S., Wang, K., Liu, W., Hu, Y., Zhang, B., & Sha, J. (2017b). Abundance, distribution, and modes of occurrence of uranium in Chinese coals. Minerals, 1–13.Google Scholar
  27. Coles, D. G., Ragaini, R. C., & Ondov, J. M. (1978). Behavior of natural radionuclides in western coal-fired power plants. Environmental Science and Technology, 12(4), 442–446.Google Scholar
  28. Dai, S., Zhao, L., Peng, S., Chou, C.-L., Wang, X., Zhang, Y., Li, D., & Sun, Y. (2010). Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. International Journal of Coal Geology, 81(4), 320–332.Google Scholar
  29. Dai, S., Ren, D., Chou, C. L., Finkelman, R. B., Seredin, V. V., & Zhou, Y. (2012). Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94, 3–21.Google Scholar
  30. Dai, S., Zhao, L., Hower, J. C., Johnston, M. N., Song, W., Wang, P., & Zhang, S. (2014). Petrology, mineralogy, and chemistry of size-fractioned fly ash from the Jungar Power Plant, Inner Mongolia, China, with emphasis on the distribution of rare earth elements. Energy and Fuels, 28(2), 1502–1514.Google Scholar
  31. Douglas, G. B., Butt, C. R. M. M., & Gray, D. J. (2011). Geology, geochemistry and mineralogy of the lignite-hosted ambassador palaeochannel uranium and multi-element deposit, Gunbarrel Basin, Western Australia. Mineralium Deposita, 46(7), 761–787.Google Scholar
  32. Durašević, M., Kandić, A., Stefanović, P., Vukanac, I., Šešlak, B., Milošević, Z., & Marković, T. (2014). Natural radioactivity in lignite samples from open pit mines “Kolubara”, Serbia—risk assessment. Applied Radiation and Isotopes, 87, 73–76.Google Scholar
  33. Eisenbud, M., & Gesell, T. F. (1997). Environmental radioactivity (chapter 6): from natural, industrial and military sources (4th ed.p. 656). San Diego: Academic Press. Elsevier.Google Scholar
  34. Eisenbud, M., & Petrow, H. G. (1964). Radioactivity in the atmospheric effluents of power plants that use fossil fuels. Science, 144(3616), 288–289.Google Scholar
  35. El-Mekawy, A. F., Badran, H. M., Seddeek, M. K., Sharshar, T., & Elnimr, T. (2015). Assessment of elemental and NROM/TENORM hazard potential from non-nuclear industries in North Sinai, Egypt. Environmental Monitoring and Assessment, 187(9), 583.Google Scholar
  36. Fardy, J., McOrist, G., & Farrar, Y. (1989). Neutron activation analysis and radioactivity measurements of Australian coals and fly ashes. Journal of Radioanalytical and Nuclear Chemistry, 133(2), 217–226.Google Scholar
  37. Farhaduzzaman, M., Abdullah, W. H., Islam, M. A., & Islam, A. (2012). Depositional environment and hydrocarbon source potential of the Permian Gondwana coals from the Barapukuria Basin, Northwest Bangladesh. International Journal of Coal Geology, 90–91, 162–179.Google Scholar
  38. Feng, T., & Lu, X. (2016). Natural radioactivity, radon exhalation rate and radiation dose of fly ash used as building materials in Xiangyang, China. Indoor and Built Environment, 25(4), 626–634.Google Scholar
  39. Finkelman, R. B., Palmer, C. A., & Wang, P. (2018). Quantification of the modes of occurrence of 42 elements in coal. International Journal of Coal Geology, 185, 138–160.Google Scholar
  40. Flues, M., Camargo, I. M. C., Silva, P. S. C., & Mazzilli, B. P. (2006). Radioactivity of coal and ashes from Figueira coal power plant in Brazil. Journal of Radioanalytical and Nuclear Chemistry, 270(3), 597–602.Google Scholar
  41. Flues, M., Camargo, I. M. C., Figueiredo Filho, P. M., Silva, P. S. C., & Mazzilli, B. P. (2007). Evaluation of radionuclides concentration in Brazilian coals. Fuel, 86(5–6), 807–812.Google Scholar
  42. Frontasyeva, M. V., Perelygin, V. P., & Vater, P. (Eds.). (2001). Radionuclides and heavy metals in environment (p. 392). Dordrecht, London: Kluwer Academic Publishers.Google Scholar
  43. Gupta, M., Mahur, A. K., Varshney, R., Sonkawade, R. G., Verma, K. D., & Prasad, R. (2013). Measurement of natural radioactivity and radon exhalation rate in fly ash samples from a thermal power plant and estimation of radiation doses. Radiation Measurements, 50, 160–165.Google Scholar
  44. Habib, M. A., Basuki, T., Miyashita, S., Bekelesi, W., Nakashima, S., Phoungthong, K., Khan, R., Rashid, M. B., Islam, A. R. M. T., Techato, K. (2018). Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment. Radiochimica Acta (Accepted)  https://doi.org/10.1515/ract-2018-3044.
  45. Haider, A. F. M. Y., Rony, M. A., Lubna, R. S., & Abedin, K. M. (2011). Detection of multiple elements in coal samples from Bangladesh by laser-induced breakdown spectrometer. Optics and Laser Technology, 43(8), 1405–1410.Google Scholar
  46. Halim, M. A., Majumder, R. K., Zaman, M. N., Hossain, S., Rasul, M. G., & Sasaki, K. (2013). Mobility and impact of trace metals in Barapukuria coal mining area, northwest Bangladesh. Arabian Journal of Geosciences, 6(12), 4593–4605.Google Scholar
  47. Halim, M. A., Majumder, R. K., & Zaman, M. N. (2015). Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh. Arabian Journal of Geosciences, 8(6), 3391–3401.Google Scholar
  48. Hasani, F., Shala, F., Xhixha, G., Xhixha, M. K., Hodolli, G., Kadiri, S., Bylyku, E., & Cfarku, F. (2014). Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo. Journal of Environmental Radioactivity, 138, 156–161.Google Scholar
  49. HosgoodIII, H. D., Chapman, R. S., He, X., Hu, W., Tian, L., Liu, L. Z., Lai, H., Chen, W., Rothman, N., & Lan, Q. (2013). History of lung disease and risk of lung cancer in a population with high household fuel combustion exposures in rural China. Lung Cancer (Amsterdam, Netherlands), 81(3), 343–346.Google Scholar
  50. Hossain, H. M. Z., Sampei, Y., Hossain, Q. H., Roser, B. P., & Islam, M. S. (2014). Characterization of alkyl phenanthrene distributions in Permian Gondwana coals and coaly shales from the Barapukuria Basin, NW Bangladesh. Researches in Organic Geochemistry, 29, 17–28.Google Scholar
  51. Hossain, M. N., Paul, S. K., & Hasan, M. M. (2015). Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh. Environmental Monitoring and Assessment, 187(4), 202.Google Scholar
  52. Hower, J. C., Dai, S., & Eskenazy, G. (2016). Distribution of uranium and other radionuclides in coal and coal combustion products, with discussion of occurrences of combustion products in Kentucky power plants. Coal Combustion and Gasification Products, 44–53.Google Scholar
  53. Howladar, M. F. (2013). Coal mining impacts on water environs around the Barapukuria coal mining area, Dinajpur, Bangladesh. Environmental Earth Sciences, 70(1), 215–226.Google Scholar
  54. Howladar, M. F., & Islam, M. R. (2016). A study on physico-chemical properties and uses of coal ash of Barapukuria coal fired thermal power plant, Dinajpur, for environmental sustainability. Energy, Ecology and Environment, 1(4), 233–247.Google Scholar
  55. Hu, Q. H., Weng, J. Q., & Wang, J. S. (2010). Sources of anthropogenic radionuclides in the environment: a review. Journal of Environmental Radioactivity, 101(6), 426–437.Google Scholar
  56. Huang, W., Wan, H., Finkelman, R. B., Tang, X., & Zhao, Z. (2012). Distribution of uranium in the main coalfields of China. Energy Exploration and Exploitation, 30(5), 819–836.Google Scholar
  57. ICRP (International Commission on Radiological Protection) (1990). Recommendations of the International Commission on Radiological Protection, 212 (1–3); publication 60, Oxford: UK Pergamon Press.Google Scholar
  58. IEA (International Energy Agency). (2017). World energy outlook report 2017. International Energy Agency (IEA), Paris, France. Accessed 01/10/2018. https://www.iea.org/media/publications/weo/WEO2017Chapter1.pdf.
  59. Islam, M. R., & Hayashi, D. (2008). Geology and coal bed methane resource potential of the Gondwana Barapukuria Coal Basin, Dinajpur, Bangladesh. International Journal of Coal Geology, 75(3), 127–143.Google Scholar
  60. Islam, S., & Khan, M. Z. R. (2017). A review of energy sector of Bangladesh. Energy Procedia, 110, 611–618.Google Scholar
  61. Islam, M. A., Latif, S. A., Hossain, S. M., Uddin, M. S., & Podder, J. (2011). The concentration and distribution of trace elements in coals and ashes of the Barapukuria thermal power plant, Bangladesh. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 33(5), 392–400.Google Scholar
  62. Karangelos, D. J., Petropoulos, N. P., Anagnostakis, M. J. Ã., Hinis, E. P., & Simopoulos, S. E. (2004). Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plants. Journal of Environmental Radioactivity, 77(3), 233–246.Google Scholar
  63. Khan, R., Shirai, N., & Ebihara, M. (2015). Chemical characteristics of R chondrites in the light of REE, Th, U and P abundances. Earth and Planetary Science Letters, 422, 18–27.  https://doi.org/10.1016/j.epsl.2015.04.008.CrossRefGoogle Scholar
  64. Khan, R., Rouf, M. A., Das, S., Tamim, U., Naher, K., Podder, J., & Hossain, S. M. (2017). Spatial and multi-layered assessment of heavy metals in the sand of Cox’s-Bazar beach of Bangladesh. Regional Studies in Marine Science, 16, 171–180.  https://doi.org/10.1016/j.rsma.2017.09.003.CrossRefGoogle Scholar
  65. Khan, R., Parvez, M. S., Tamim, U., Das, S., Islam, M. A., Naher, K., Khan, M. H. R., Nahid, F., & Hossain, S. M. (2018a). Assessment of rare earth elements, Th and U profile of a site for a potential coal-based power plant by instrumental neutron activation analysis. Radiochimica Acta, 106(6), 515–524.  https://doi.org/10.1515/ract-2017-2867.CrossRefGoogle Scholar
  66. Khan, R., Ghosal, S., Sengupta, D, Tamim, U., Hossain, S.M., Agrahari, S. (2018b). Studies on heavy mineral placers from eastern coast of Odisha, India by instrumental neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, (Accepted) ( https://doi.org/10.1007/s10967-018-6250-1).
  67. Khandekar, M. P., Bhide, A. D., & Sajwan, K. S. (1999). Trace elements in Indian coal and coal fly ash (chapter 6). In K. S. Sajwan, A. K. Alva, & R. F. Keefer (Eds.), Biogeochemistry of trace elements in coal and coal combustion byproducts (pp. 99–113). Boston: Springer US: Imprint: Springer.Google Scholar
  68. Kolo, M. T., Khandaker, M. U., Amin, Y. M., Hasiah, W., & Abdullah, W. H. B. (2016). Quantification and radiological risk estimation due to the presence of natural radionuclides in Maiganga coal, Nigeria. PLoS One, 11(6), 1–13.Google Scholar
  69. Krylov, D. A., & Sidorova, G. P. (2013). Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants. Thermal Engineering, 60(4), 239–243.Google Scholar
  70. L’Annunziata, M. F. (2003). Handbook of radioactivity analysis (2003) (2nd ed.p. 1273). San Diego: Academic Press.Google Scholar
  71. Laraia, M. (2015). Radioactive contamination and other environmental impacts of waste from nuclear and conventional power plants, medical and other industrial sources (chapter 2). In L. V. Velzen (Ed.), Environmental remediation and restoration of contaminated nuclear and norm sites van (pp. 35–56). Cambridge: Woodhead Publishing, an imprint of Elsevier.Google Scholar
  72. Lauer, N. E., Hower, J. C., Hsu-Kim, H., Taggart, R. K., & Vengosh, A. (2015). Naturally occurring radioactive materials in coals and coal combustion residuals in the United States. Environmental Science and Technology, 49(18), 11227–11233.Google Scholar
  73. Lauer, N., Vengosh, A., & Dai, S. (2017). Naturally occurring radioactive materials in uranium-rich coals and associated coal combustion residues from China. Environmental Science and Technology, 51(22), 13487–13493.Google Scholar
  74. Li, J., Zhuang, X., Querol, X., Font, O., Moreno, N., & Zhou, J. (2012). Environmental geochemistry of the feed coals and their combustion by-products from two coal-fired power plants in Xinjiang Province, Northwest China. Fuel, 95, 446–456.Google Scholar
  75. Li, B., Zhuang, X., Li, J., Querol, X., Font, O., & Moreno, N. (2017). Enrichment and distribution of elements in the Late Permian coals from the Zhina Coalfield, Guizhou Province, Southwest China. International Journal of Coal Geology, 171, 111–129.Google Scholar
  76. Liu, G., Luo, Q., Ding, M., & Feng, J. (2015). Natural radionuclides in soil near a coal-fired power plant in the high background radiation area, South China. Environmental Monitoring and Assessment, 187(6), 356.Google Scholar
  77. Lu, X., Li, L. Y., Wang, F., Wang, L., & Zhang, X. (2012). Radiological hazards of coal and ash samples collected from Xi’an coal-fired power plants of China. Environmental Earth Sciences, 66(7), 1925–1932.Google Scholar
  78. Mahur, A. K., Kumar, R., Sengupta, D., & Prasad, R. (2008). Estimation of radon exhalation rate, natural radioactivity and radiation doses in fly ash samples from Durgapur thermal power plant, West Bengal, India. Journal of Environmental Radioactivity, 99(8), 1289–1293.Google Scholar
  79. Mahur, A.K., Gupta, M., Varshney, R., Sonkawade, R.G., Verma, K.D., & Prasad, R. (2013). Radon exhalation and gamma radioactivity levels in soil and radiation hazard assessment in the surrounding area of National Thermal Power Corporation, Dadri (UP), India. Radiation Measurements, 50, 130–135.Google Scholar
  80. Megalovasilis, P., Papastergios, G., & Filippidis, A. (2013). Behavior study of trace elements in pulverized lignite, bottom ash, and fly ash of Amyntaio power station, Greece. Environmental Monitoring and Assessment, 185(7), 6071–6076.Google Scholar
  81. Menon, R., Raja, P., Malpe, D., Subramaniyam, K. S. V., & Balaram, V. (2011). Radioelemental characterization of fly ash from Chandrapur super thermal power station, Maharashtra, India. Current Science, 1880–1883.Google Scholar
  82. Michalik, B., Brown, J., & Krajewski, P. (2013). The fate and behaviour of enhanced natural radioactivity with respect to environmental protection. Environmental Impact Assessment Review, 38, 163–171.Google Scholar
  83. Mishra, U. C. (2004). Environmental impact of coal industry and thermal power plants in India. Journal of Environmental Radioactivity, 72(1–2), 35–40.Google Scholar
  84. Mondal, T., Sengupta, D., & Mandal, A. (2006). Natural radioactivity of ash and coal in major thermal power plants of West Bengal, India. Current Science, 91(10), 1387–1393.Google Scholar
  85. Mondal, M. A. H., Boie, W., & Denich, M. (2010). Future demand scenarios of Bangladesh power sector. Energy Policy, 38(11), 7416–7426.Google Scholar
  86. Monir, M. M. U., & Hossain, H. Z. (2012). Coal mine accidents in Bangladesh: its causes and remedial measures. International Journal of Economic and Environmental Geology, 3, 33–40.Google Scholar
  87. Mora, J. C., Baeza, A., Robles, B., Corbacho, J. A., & Cancio, D. (2009). Behaviour of natural radionuclides in coal combustion. Radioprotection, 44(5), 577–580.Google Scholar
  88. Munawer, M. E. (2018). Human health and environmental impacts of coal combustion and post-combustion wastes. Journal of Sustainable Mining, 17(2), 87–96.Google Scholar
  89. Norman, P. S. (1992). Evaluation of the Barapukuria coal deposit NW Bangladesh. Geological Society of London, 63(1), 107–120.Google Scholar
  90. Orem, W. H., & Finkelman, R. B. (2014). Coal formation and geochemistry (chapter 9.8). In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (2nd ed., pp. 207–232). Oxford: Elsevier.Google Scholar
  91. Ozden, B., Guler, E., Vaasma, T., Horvath, M., Kiisk, M., & Kovacs, T. (2018). Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey. Journal of Environmental Radioactivity, 188, 100–1007.Google Scholar
  92. Özkul, C. (2016). Heavy metal contamination in soils around the Tunçbilek thermal power plant (Kütahya, Turkey). Environmental Monitoring and Assessment, 188(5), 284.Google Scholar
  93. Pak, Y. N., Pak, D. Y., Ponomaryova, M. V., Baizbayev, M. B., & Zhelayeva, N. V. (2018). Radioactivity of coal and its combustion wastes. Coke and Chemistry, 61(5), 188–192.Google Scholar
  94. Papastefanou, C. (2010). Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review. Journal of Environmental Radioactivity, 101(3), 191–200.Google Scholar
  95. Parial, K., Guin, R., Agrahari, S., & Sengupta, D. (2016). Monitoring of radionuclide migration around Kolaghat thermal power plant, West Bengal, India. Journal of Radioanalytical and Nuclear Chemistry, 307(1), 533–539.Google Scholar
  96. Patra, K. C., Rautray, T. R., Tripathy, B. B., & Nayak, P. (2012). Elemental analysis of coal and coal ASH by PIXE technique. Applied Radiation and Isotopes, 70(4), 612–616.Google Scholar
  97. Podder, J., Tarek, S. A., & Hossain, T. (2004). Trace elemental analysis of Permian Gondana coals in Bangaldesh by PIXE technique. International Journal of PIXE, 14(3 and 4), 89–97.Google Scholar
  98. PSMP (Power System Master Plan). (2010). Power Division, Ministry of Power, Energy and Mineral Recourses, Government of the People’s Republic of Bangladesh, Dhaka. http://www.bpdb.gov.bd/download/PSMP/PSMP2010.pdf. Accessed 11 Jan 2018.
  99. PSMP (Power System Master Plan). (2016). Power system master plan report 2016 (draft). Ministry of Power, Energy and Mineral Resources, Government of the People’s Republic of Bangladesh, Dhaka.Google Scholar
  100. Ram, L. C., Masto, R. E., Srivastava, N. K., George, J., Selvi, V. A., Das, T. B., Pal, S. K., Maity, S., & Mohanty, D. (2015). Potentially toxic elements in lignite and its combustion residues from a power plant. Environmental Monitoring and Assessment, 187(1), 4148.Google Scholar
  101. Sahu, S. K., Tiwari, M., Bhangare, R. C., & Pandit, G. G. (2014). Enrichment and particle size dependence of polonium and other naturally occurring radionuclides in coal ash. Journal of Environmental Radioactivity, 138(Supplement C), 421–426.Google Scholar
  102. Sahu, S. K., Tiwari, M., Bhangare, R. C., Ajmal, P. Y., & Pandit, G. G. (2017). Partitioning behavior of natural radionuclides during combustion of coal in thermal power plants. Environmental Forensics, 18(1), 36–43.Google Scholar
  103. Sajwan, K. S., Alva, A. K., Punshon, T., & Twardowska, I. (Eds.). (2011). Coal combustion byproducts and environmental issues (p. 242). New York, London: Springer.Google Scholar
  104. Sengupta, D., and Agrahari, S. (Eds.) (2017). Heavy metal and radionuclide contaminant migration in the vicinity of thermal power plants: monitoring, remediation, and utilization (chapter 2). In Modelling trends in solid and hazardous waste management (pp. 15–33). Singapore: Springer.Google Scholar
  105. Siegel, M. D., & Bryan, C. R. (2014). Radioactivity, geochemistry, and health (chapter 11.6). In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (2nd ed., pp. 191–256). Amsterdam, Oxford, Waltham, Elsevier.Google Scholar
  106. Singh, L. M., Kumar, M., Sahoo, B. K., Sapra, B. K., & Kumar, R. (2015). Study of natural radioactivity, radon exhalation rate and radiation doses in coal and fly ash samples from thermal power plants, India. Physics Procedia, 80, 120–124.Google Scholar
  107. Skoko, B., Marović, G., Babić, D., Šoštarić, M., & Jukić, M. (2017). Plant uptake of 238U, 235U, 232Th, 226Ra, 210Pb and 40K from a coal ash and slag disposal site and control soil under field conditions: a preliminary study. Journal of Environmental Radioactivity, 172, 113–121.Google Scholar
  108. Swaine, D. J. (2014). Trace elements in coal (p. 293). Kent: Elsevier Science.Google Scholar
  109. Swanson, S. M., Engle, M. A., Ruppert, L. F., Affolter, R. H., & Jones, K. B. (2013). Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States. International Journal of Coal Geology, 113, 116–126.Google Scholar
  110. Tang, Q., Liu, G., Zhou, C., & Sun, R. (2013). Distribution of trace elements in feed coal and combustion residues from two coal-fired power plants at Huainan, Anhui, China. Fuel, 107, 315–322.Google Scholar
  111. Tso, M. W., & Leung, J. K. C. (1996). Radiological impact of coal ash from the power plants in Hong Kong. Journal of Environmental Radioactivity, 30(1), 1–14.Google Scholar
  112. Turhan, Ş., Parmaksız, A., Köse, A., Yüksel, A., Arıkan, İ. H., & Yücel, B. (2010). Radiological characteristics of pulverized fly ashes produced in Turkish coal-burning thermal power plants. Fuel, 89(12), 3892–3900.Google Scholar
  113. Turhan, Ş., Gören, E., Garad, A. M., Altıkulaç, A., Kurnaz, A., Duran, C., Hançerlioğulları, A., Altunal, V., Güçkan, V., & Özdemir, A. (2018). Radiometric measurement of lignite coal and its by-products and assessment of the usability of fly ash as raw materials in Turkey. Radiochimica Acta, 106(7), 611–621.Google Scholar
  114. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). (1982). Ionizing radiation: sources and biological effects. UNSCEAR 1982 Report to the General Assembly, with Annex C. United Nations, New York, USA.Google Scholar
  115. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). (2000). Sources and effects of ionizing radiation. UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. United Nations (A/55/46), New York.Google Scholar
  116. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). (2010). Sources, effects and risks of ionizing radiation. Annex B: exposures of the public and workers from various sources of radiation. UNSCEAR 2008 Report to the General Assembly, with annexes, v. 1, United Nations, New York.Google Scholar
  117. Usmani, Z., & Kumar, V. (2017). Characterization, partitioning, and potential ecological risk quantification of trace elements in coal fly ash. Environmental Science and Pollution Research, 24(18), 15547–15566.Google Scholar
  118. Verma, S. K., Masto, R. E., Gautam, S., Choudhury, D. P., Ram, L. C., Maiti, S. K., & Maity, S. (2015). Investigations on PAHs and trace elements in coal and its combustion residues from a power plant. Fuel, 162, 138–147.Google Scholar
  119. Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., & Xi, Y. Q. (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 141, 105–121.Google Scholar
  120. Zakir, H. M., Arafat, M. Y., & Islam, M. M. (2017). Assessment of metallic pollution along with geochemical baseline of soils at Barapukuria open coal mine area in Dinajpur, Bangladesh. Asian Journal of Water, Environment and Pollution, 14(4), 77–88.Google Scholar
  121. Zaman, R., Brudermann, T., Kumar, S., & Islam, N. (2018). A multi-criteria analysis of coal-based power generation in Bangladesh. Energy Policy, 116, 182–192.Google Scholar
  122. Zhou, C., Liu, G., Yan, Z., Fang, T., & Wang, R. (2012). Transformation behavior of mineral composition and trace elements during coal gangue combustion. Fuel, 97, 644–650.Google Scholar
  123. Zhou, C., Liu, G., Cheng, S., Fang, T., & Lam, P. K. (2014). The environmental geochemistry of trace elements and naturally radionuclides in a coal gangue brick-making plant. Scientific Reports, 4, 6221.Google Scholar
  124. Zivotić, D., Grzetić, I., Lorenz, H., & Simić, V. (2008). U and Th in some brown coals of Serbia and Montenegro and their environmental impact. Environmental Science and Pollution Research, 15(2), 155–161.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018
corrected publication 2019

Authors and Affiliations

  • Md. Ahosan Habib
    • 1
  • Triyono Basuki
    • 2
    • 3
  • Sunao Miyashita
    • 3
  • Wiseman Bekelesi
    • 2
    • 3
  • Satoru Nakashima
    • 2
    • 3
    • 4
  • Kuaanan Techato
    • 5
    • 6
  • Rahat Khan
    • 7
  • Abdul Baquee Khan Majlis
    • 8
  • Khamphe Phoungthong
    • 5
    • 6
  1. 1.Faculty of Environmental ManagementPrince of Songkla UniversityHatyaiThailand
  2. 2.Radioactivity Environmental Protection Course, Phoenix Leader Education ProgramHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Department of Chemistry, Graduate School of ScienceHiroshima UniversityHigashi-HiroshimaJapan
  4. 4.Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHigashi-HiroshimaJapan
  5. 5.Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental ManagementPrince of Songkla UniversityHatyaiThailand
  6. 6.Center of Excellence on Hazardous Substance Management (HSM)BangkokThailand
  7. 7.Institute of Nuclear Science and TechnologyBangladesh Atomic Energy CommissionSavarBangladesh
  8. 8.Geological Survey of BangladeshSegunbaghichaBangladesh

Personalised recommendations