Forthcoming risk of Prosopis juliflora global invasion triggered by climate change: implications for environmental monitoring and risk assessment

  • Iraj Heshmati
  • Nematollah KhorasaniEmail author
  • Bahman Shams-Esfandabad
  • Borhan Riazi


Climate is a determinant factor in species distribution and climate change will affect the species abilities to occupy geographic regions. Prosopis juliflora is one of the most problematic invasive species and its biological invasion causes various negative effects in tropical, arid, and semi-arid regions of the world. As eradication efforts subsequent to the establishment of an alien invasive species are costly and time-consuming, assessing patterns of the introduction of an invasive species to new regions is among the most cost-effective means of monitoring and management of natural ecosystems. In this study by using the concept of species distribution modeling (SDM) and maximum entropy (MaxEnt) method, the effect of climate change on the current and future distribution of P. juliflora has been assessed at a global scale. Bioclimatic variables in current condition and 2050 regarding two global circulation models (GCM) and two climate change scenarios were considered as explanatory variables. Our results showed that annual mean temperature (BIO1), annual precipitation (BIO12), and temperature mean diurnal range (BIO2) represented more than 87% of the variations in the model, and with an AUC of 0.854 and TSS of 0.51, the model showed a good predictive performance. Our results indicate that on a global scale, suitable ranges for P. juliflora increase across all the GCM and RCP scenarios. In a global scale, Mediterranean Basin, Middle East, and North America are regions with the highest risk of range expansion in the future. Regarding the negative impacts of P. juliflora on structure and function of natural habitats in the invaded areas, findings of this study could be considered as a warning appliance for the environmental monitoring of the regions highly sensitive to the global invasion of the species. We suggest that assessing impacts of climate change on the global distribution of the invasive species could be used as an efficient tool to implement broad-scale and priority-setting monitoring programs in natural ecosystems.


Mesquite Alien species Range expansion MaxEnt Biological invasion 



We would like to thank the provincial bureau of the Department of Environment in Khuzestan, Boushehr, Hoemozgan, and Sistan and Balouchetan provinces for their logistic assistance. Our special thanks go to the staff and game gourds for their help during the field sampling.


  1. Aboud, A. A., Kisoyan, P. K., & Coppock, D. L. (2005). Agro-pastoralists’ wrath for the Prosopis tree: The case of the IL Chamus of Baringo District, Kenya. Global Livestock Collaborative Research Support Program. USA: University of California at Davis.Google Scholar
  2. Al-Rawahy, S. H., Al-Dhafri, K. S., & Al-Bahlany, S. S. (2003). Germination, growth and drought resistance of native and alien plant species of the genus Prosopis in the Sultanate of Oman. Asian Journal of Plant Sciences, 2(14), 1020–1023.CrossRefGoogle Scholar
  3. Alban, L., Matorel, M., Romero, J., Grados, N., Cruz, G., & Felker, P. (2002). Cloning of elite, multipurpose trees of the Prosopis juliflora/pallida complex in Piura. Peru Agroforestry Systems, 54, 173–182.CrossRefGoogle Scholar
  4. Alexander, J. M., & Edwards, P. J. (2010). Limits to the niche and range margins of alien species. Oikos, 119(9), 1377–1386.CrossRefGoogle Scholar
  5. Broennimann, O., & Guisan, A. (2008). Predicting current and future biological invasions: both native and invaded ranges matter. Biology Letters, 4(5), 585–589.CrossRefGoogle Scholar
  6. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024–1026.CrossRefGoogle Scholar
  7. Davidson, A. M., Jennions, M., & Nicotra, A. B. (2011). Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters, 14(4), 419–431.CrossRefGoogle Scholar
  8. Early, R., & Sax, D. F. (2014). Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Global Ecology and Biogeography, 23(12), 1356–1365.CrossRefGoogle Scholar
  9. Ehrenfeld, J. G. (2010). Ecosystem consequences of biological invasions. Annual Review of Ecology, Evolution, and Systematics, 41, 59–80.CrossRefGoogle Scholar
  10. El-Keblawy, A., & Al-Rawai, A. (2005). Effects of salinity, temperature and light on germination of invasive Prosopis juliflora (Sw.) DC. Journal of Arid Environments, 61(4), 555–565.CrossRefGoogle Scholar
  11. El-Keblawy, A., & Al-Rawai, A. (2007). Impacts of the invasive exotic Prosopis juliflora (Sw.) DC on the native flora and soils of the UAE. Plant Ecology, 190(1), 23–35.CrossRefGoogle Scholar
  12. Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151.CrossRefGoogle Scholar
  13. Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1(4), 330–342.CrossRefGoogle Scholar
  14. Evangelista, P. H., Kumar, S., Stohlgren, T. J., Jarnevich, C. S., Crall, A. W., Norman, J. B., III, et al. (2008). Modelling invasion for a habitat generalist and a specialist plant species. Diversity and Distributions, 14(5), 808–817.CrossRefGoogle Scholar
  15. Fandohan, A. B., Oduor, A. M., Sodé, A. I., Wu, L., Cuni-Sanchez, A., Assédé, E., et al. (2015). Modeling vulnerability of protected areas to invasion by Chromolaena odorata under current and future climates. Ecosystem Health and Sustainability, 1(6), 1–12.CrossRefGoogle Scholar
  16. Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W. J., et al. (2013). Evaluation of climate models. In Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Climate Change 2013 (Vol. 5, pp. 741–866).Google Scholar
  17. Franklin, J. (2010). Mapping species distributions: Spatial inference and prediction. Cambridge University Press.Google Scholar
  18. Franks, S. J., Weber, J. J., & Aitken, S. N. (2014). Evolutionary and plastic responses to climate change in terrestrial plant populations. Evolutionary Applications, 7(1), 123–139.CrossRefGoogle Scholar
  19. Gallagher, R. V., Beaumont, L. J., Hughes, L., & Leishman, M. R. (2010). Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. Journal of Ecology, 98(4), 790–799.CrossRefGoogle Scholar
  20. Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E., & Thuiller, W. (2012). Invasive species distribution models–how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography, 21(11), 1126–1136.CrossRefGoogle Scholar
  21. Garcia, R. A., Cabeza, M., Rahbek, C., & Araújo, M. B. (2014). Multiple dimensions of climate change and their implications for biodiversity. Science, 344(6183), 1247579.CrossRefGoogle Scholar
  22. Geesing, D., Al-Khawlani, M., & Abba, M. L. (2004). Management of introduced Prosopis species: can economic exploitation control an invasive species? Unasylva, Forest threats, 55, 36–44.Google Scholar
  23. Genovesi, P. (2005). Eradications of invasive alien species in Europe: a review. Biological Invasions, 7(1), 127–133.CrossRefGoogle Scholar
  24. Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z. L., & Zhang, M. (2011). The community climate system model version 4. Journal of Climate, 24(19), 4973–4991.CrossRefGoogle Scholar
  25. Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W., & Holt, R. D. (2010). A framework for community interactions under climate change. Trends in Ecology & Evolution, 25(6), 325–331.CrossRefGoogle Scholar
  26. Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9), 993–1009.CrossRefGoogle Scholar
  27. Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I., et al. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424–1435.CrossRefGoogle Scholar
  28. Hellmann, J. J., Byers, J. E., Bierwagen, B. G., & Dukes, J. S. (2008). Five potential consequences of climate change for invasive species. Conservation Biology, 22(3), 534–543.CrossRefGoogle Scholar
  29. Hijmans, R., Guarino, L., & Mathur, P. (2012). DIVA-GIS. Version 7.5. A geographic information system for the analysis of species distribution data. Available at: www. diva-gis. org.Google Scholar
  30. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.CrossRefGoogle Scholar
  31. Jama, B., & Zeila, A. (2005). Agroforestry in the drylands of eastern Africa: a call to action. ICRAF Working Paper Nairobi: World Agroforestry Centre.Google Scholar
  32. Jeschke, J. M., Bacher, S., Blackburn, T. M., Dick, J. T., Essl, F., Evans, T., et al. (2014). Defining the impact of non-native species. Conservation Biology, 28(5), 1188–1194.CrossRefGoogle Scholar
  33. Kettunen, M., Genovesi, P., Gollasch, S., Pagad, S., Starfinger, U., ten Brink, P., et al. (2009). Technical support to EU strategy on invasive alien species (IAS). Institute for European Environmental Policy (IEEP), Brussels, 44.Google Scholar
  34. Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A. K., Augeri, D. M., Cheyne, S. M., Hearn, A. J., Ross, J., Macdonald, D. W., Mathai, J., Eaton, J., Marshall, A. J., Semiadi, G., Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J. W., Breitenmoser-Wuersten, C., Belant, J. L., Hofer, H., & Wilting, A. (2013). The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19(11), 1366–1379. Scholar
  35. Kumar, S., Neven, L. G., Zhu, H., & Zhang, R. (2015). Assessing the global risk of establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt niche models. Journal of Economic Entomology, 108(4), 1708–1719.CrossRefGoogle Scholar
  36. Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3), 385–393.CrossRefGoogle Scholar
  37. Maiorano, L., Falcucci, A., Zimmermann, N. E., Psomas, A., Pottier, J., Baisero, D., Rondinini, C., Guisan, A., & Boitani, L. (2011). The future of terrestrial mammals in the Mediterranean basin under climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1578), 2681–2692.CrossRefGoogle Scholar
  38. McCary, M. A., Mores, R., Farfan, M. A., & Wise, D. H. (2016). Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: a meta-analysis. Ecology Letters, 19(3), 328–335.CrossRefGoogle Scholar
  39. McNeely, J. A. (2001). Global strategy on invasive alien species: IUCN.Google Scholar
  40. Mwangi, E., & Swallow, B. (2008). Prosopis juliflora invasion and rural livelihoods in the Lake Baringo area of Kenya. Conservation and Society, 6(2), 130–140.CrossRefGoogle Scholar
  41. Oliver, T. H., & Morecroft, M. D. (2014). Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdisciplinary Reviews: Climate Change, 5(3), 317–335.CrossRefGoogle Scholar
  42. Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.CrossRefGoogle Scholar
  43. Pasiecznik, N. M., Harris, P. J. C., & Smith, S. J. (2004). Identifying tropical prosopis species: a field guide. Coventry, UK: International Research Department, HDRA.Google Scholar
  44. Pejchar, L., & Mooney, H. A. (2009). Invasive species, ecosystem services and human well-being. Trends in Ecology & Evolution, 24(9), 497–504.CrossRefGoogle Scholar
  45. Pereira, H. M., Leadley, P. W., Proença, V., Alkemade, R., Scharlemann, J. P., Fernandez-Manjarrés, J. F., et al. (2010). Scenarios for global biodiversity in the 21st century. Science, 1196624.Google Scholar
  46. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.CrossRefGoogle Scholar
  47. Pyšek, P., Sádlo, J., Mandák, B., & Jarošík, V. (2003). Czech alien flora and the historical pattern of its formation: what came first to Central Europe? Oecologia, 135(1), 122–130.CrossRefGoogle Scholar
  48. Qian, H., & Ricklefs, R. E. (2006). The role of exotic species in homogenizing the North American flora. Ecology Letters, 9(12), 1293–1298.CrossRefGoogle Scholar
  49. Rejmánek, M. (2000). Invasive plants: approaches and predictions. Austral Ecology, 25, 497–506.CrossRefGoogle Scholar
  50. Rejmánek, M., & Richardson, D. M. (1996). What attributes make some plant species more invasive? Ecology, 77(6), 1655–1661.CrossRefGoogle Scholar
  51. Rejmanek, M., Richardson, D. M., Higgins, S. I., Pitcairn, M. J., & Grotkopp, E. (2005). Ecology of invasive plants: state of the art. In H. A. Mooney, R. Mack, J. A. McNeely, L. E. Neville, P. J. Schei, & J. K. Waage (Eds.), Invasive alien species: a new synthesis (pp. 104–161): Island Press, Washington, DC.Google Scholar
  52. Scheffers, B. R., De Meester, L., Bridge, T. C., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. T., et al. (2016). The broad footprint of climate change from genes to biomes to people. Science, 354(6313), aaf7671.CrossRefGoogle Scholar
  53. Schirmel, J., Bundschuh, M., Entling, M. H., Kowarik, I., & Buchholz, S. (2016). Impacts of invasive plants on resident animals across ecosystems, taxa, and feeding types: a global assessment. Global Change Biology, 22(2), 594–603.CrossRefGoogle Scholar
  54. Scott, J., & Panetta, F. (1993). Predicting the Australian weed status of southern African plants. Journal of Biogeography, 20, 87–93.CrossRefGoogle Scholar
  55. Shabani, F., & Kumar, L. (2015). Should species distribution models use only native or exotic records of existence or both? Ecological Informatics, 29, 57–65.CrossRefGoogle Scholar
  56. Shabani, F., Kumar, L., & Ahmadi, M. (2016). A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecology and Evolution, 6(16), 5973–5986.CrossRefGoogle Scholar
  57. Sharma, R., & Dakshini, K. (1998). Integration of plant and soil characteristics and the ecological success of two shape Prosopis species. Plant Ecology, 139(1), 63–69.CrossRefGoogle Scholar
  58. Shiferaw, H., Teketay, D., Nemomissa, S., & Assefa, F. (2004). Some biological characteristics that foster the invasion of Prosopis juliflora (Sw.) DC. At middle awash Rift Valley area, North-Eastern Ethiopia. Journal of Arid Environments, 58(2), 135–154.CrossRefGoogle Scholar
  59. Thuiller, W., Richardson, D. M., PYŠEK, P., Midgley, G. F., Hughes, G. O., & Rouget, M. (2005). Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11(12), 2234–2250.CrossRefGoogle Scholar
  60. Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. (2011). The representative concentration pathways: an overview. Climatic Change, 109(1–2), 5–31.CrossRefGoogle Scholar
  61. VanDerWal, J., Murphy, H. T., Kutt, A. S., Perkins, G. C., Bateman, B. L., Perry, J. J., & Reside, A. E. (2013). Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nature Climate Change, 3(3), 239–243.CrossRefGoogle Scholar
  62. Vilà, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jarošík, V., Maron, J. L., Pergl, J., Schaffner, U., Sun, Y., & Pyšek, P. (2011). Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology letters, 14(7), 702–708.CrossRefGoogle Scholar
  63. Wakie, T. T., Evangelista, P. H., Jarnevich, C. S., & Laituri, M. (2014). Mapping current and potential distribution of non-native Prosopis juliflora in the Afar region of Ethiopia. PLoS One, 9(11), e112854.CrossRefGoogle Scholar
  64. Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., et al. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389–395.CrossRefGoogle Scholar
  65. Wang, W., Tang, X., Zhu, Q., Pan, K., Hu, Q., He, M., & Li, J. (2014). Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China. PLoS One, 9(11), e111587.CrossRefGoogle Scholar
  66. Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33(3), 607–611.Google Scholar
  67. Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S., Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki, D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., & Kimoto, M. (2010). Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. Journal of Climate, 23(23), 6312–6335.CrossRefGoogle Scholar
  68. Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen, E. I., Jonathan Davies, T., Grytnes, J. A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13(10), 1310–1324.CrossRefGoogle Scholar
  69. Wisz, M. S., Hijmans, R., Li, J., Peterson, A. T., Graham, C., Guisan, A., et al. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763–773.CrossRefGoogle Scholar
  70. Yousefi, M., Ahmadi, M., Nourani, E., Behrooz, R., Rajabizadeh, M., Geniez, P., & Kaboli, M. (2015). Upward altitudinal shifts in habitat suitability of mountain vipers since the last glacial maximum. PLoS One, 10(9), e0138087.CrossRefGoogle Scholar
  71. Zavaleta, E. S., Hobbs, R. J., & Mooney, H. A. (2001). Viewing invasive species removal in a whole-ecosystem context. Trends in Ecology & Evolution, 16(8), 454–459.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Iraj Heshmati
    • 1
  • Nematollah Khorasani
    • 1
    Email author
  • Bahman Shams-Esfandabad
    • 2
  • Borhan Riazi
    • 1
  1. 1.Department of Environment Science, Faculty of Natural Resources and Environment, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Environmental Science, Faculty of Agriculture and Natural Resources, Arak BranchIslamic Azad UniversityArakIran

Personalised recommendations