Advertisement

Sediment pollution in an urban water supply lake in southern Brazil

  • Leonardo Capeleto de AndradeEmail author
  • Fabrício Fernandes Coelho
  • Sayed M. Hassan
  • Lawrence A. Morris
  • Flávio Anastácio de Oliveira Camargo
Article
  • 126 Downloads

Abstract

Urbanization and anthropogenic activities create many environmental issues in urban water supply reservoirs, especially in metropolitan regions. Thus, this study was carried out aiming to evaluate the variance in the physical-chemical characteristics of bottom sediment along the Lake Guaíba, Brazil. Lake Guaíba is a freshwater lake situated in a metropolitan region in southern Brazil, being the main water supply to the region. Surface sediment was evaluated to pH, electrical conductivity, particle-size, total organic carbon and nitrogen, metals and inorganic elements (Fe, Al, Ca, Ba, Sr, Co, Tl, Zn, Cu, Cr, Ni, Pb, Cd, and Hg), and organic compounds. The sediments in the Lake Guaíba show a wide range in the physical-chemical characteristics. Metals Zn, Cu, Cr, and Ni appear in higher concentrations near to the margin of southern Porto Alegre, where there was also more clay plus silt. Sediments of Lake Guaíba have physical-chemical variability by the settle tendency and water flow from the riverine to lacustrine areas. The sediment in Lake Guaíba had a median of: Zn, 132; Cu, 78; Cr, 42; Ni, 28; Pb, 33; Cd, 0.3; and Hg, 0.07 μg/g. Bed sediments of Lake Guaíba are polluted with Zn, Cu, Cr, and Ni, major in the east margin (near to Porto Alegre). The potential toxic metals and organic compounds found in Lake Guaíba are commonly reported in urban regions around the world. Those elements and compounds derive from many anthropic activities, as industries, sewage, and vehicles. With diffuse sources in the region, the pollution control in Lake Guaíba is very complex.

Keywords

Contamination Metals Sewage Social impacts 

Notes

Funding information

This work had financial support from the Brazilian National Counsel of Technological and Scientific Development (CNPq), as scholarship (doctoral) for the first author; and from the Coordination for the Improvement of Higher Education Personnel (CAPES), as scholarship (PDSE) for the first author at University of Georgia (UGA).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adamiec, E., Jarosz-Krzemińska, E., & Wieszała, R. (2016). Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environmental Monitoring and Assessment, 188, 369.  https://doi.org/10.1007/s10661-016-5377-1.CrossRefGoogle Scholar
  2. Bing, H., Wu, Y., Zhou, J., et al. (2016). Historical trends of anthropogenic metals in Eastern Tibetan Plateau as reconstructed from alpine lake sediments over the last century. Chemosphere, 148, 211–219.  https://doi.org/10.1016/j.chemosphere.2016.01.042.CrossRefGoogle Scholar
  3. Brasil (2012) Resolução CONAMA n° 454, de 01 de novembro de 2012. Diário Oficial [da] República Federativa do Brasil, Brasil.Google Scholar
  4. CEIC (2017) Centro Integrado de Comando da Cidade de Porto Alegre: Dados Históricos das Estações Meteorológicas. http://www2.portoalegre.rs.gov.br/ceic/default.php?p_secao=52. Accessed 26 Jan 2017.
  5. Chaharlang, B. H., Bakhtiari, A. R., Mohammadi, J., & Farshchi, P. (2016). Geochemical partitioning and pollution assessment of Ni and V as indicator of oil pollution in surface sediments from Shadegan wildlife refuge, Iran. Marine Pollution Bulletin, 111, 247–259.  https://doi.org/10.1016/j.marpolbul.2016.06.109.CrossRefGoogle Scholar
  6. de Andrade, L. C., Andrade, R. D. R., & Camargo FA de, O. (2018a). The historical influence of tributaries on the water and sediment of Jacuí’s Delta, Southern Brazil. Ambiente & Água, 13, 12.  https://doi.org/10.4136/ambi-agua.2150.
  7. de Andrade, L. C., Tiecher, T., de Oliveira, J. S., et al. (2018b). Sediment pollution in margins of the Lake Guaíba, Southern Brazil. Environmental Monitoring and Assessment, 190, 3.  https://doi.org/10.1007/s10661-017-6365-9.CrossRefGoogle Scholar
  8. FEPAM - Fundação Estadual de Proteção Ambiental Henrique Luiz Roessler (2014) Portaria FEPAM No 85. Dispõe sobre o estabelecimento de Valores de Referência de Qualidade (VRQ) dos solos para 09 (nove) elementos químicos naturalmente presentes nas diferentes províncias geomorfológicas/geológicas do Estado do Rio Grande do Sul. FEPAM, Porto Alegre, RS.Google Scholar
  9. Fu, Z., Wu, F., Chen, L., et al. (2016). Copper and zinc, but not other priority toxic metals, pose risks to native aquatic species in a large urban lake in Eastern China. Environmental Pollution, 219, 1069–1076.  https://doi.org/10.1016/J.ENVPOL.2016.09.007.CrossRefGoogle Scholar
  10. Gonçalves, S. P., Lucheta, F., de, S. V. K., & Terra, N. R. (2012). The influence of xenobiotics in river sediment on the reproduction and survival of Daphnia magna, 1820, Straus. Acta Limnologica Brasiliensia, 24, 220–234.  https://doi.org/10.1590/S2179-975X2012005000040.CrossRefGoogle Scholar
  11. Kee, Y. L., Mukherjee, S., & Pariatamby, A. (2015). Effective remediation of phenol,2,4-bis(1,1-dimethylethyl) and bis(2-ethylhexyl) phthalate in farm effluent using guar gum – a plant based biopolymer. Chemosphere, 136, 111–117.  https://doi.org/10.1016/J.CHEMOSPHERE.2015.04.074.CrossRefGoogle Scholar
  12. Koldaş, S., Demirtas, I., Ozen, T., et al. (2015). Phytochemical screening, anticancer and antioxidant activities of Origanum vulgare L. ssp. viride (Boiss.) Hayek, a plant of traditional usage. Journal of the Science of Food and Agriculture, 95, 786–798.  https://doi.org/10.1002/jsfa.6903.CrossRefGoogle Scholar
  13. Laybauer, L. (2002). Estudo do Risco ambiental e da dinâmica sedimentológica e geoquímica da contaminação por metais pesados nos sedimentos do Lago Guaíba, Rio Grande do Sul, Brasil. Universidade Federal do Rio Grande do Sul.Google Scholar
  14. Liu, J., Yin, P., Chen, B., et al. (2016). Distribution and contamination assessment of heavy metals in surface sediments of the Luanhe River Estuary, northwest of the Bohai Sea. Marine Pollution Bulletin, 109, 633–639.  https://doi.org/10.1016/j.marpolbul.2016.05.020.CrossRefGoogle Scholar
  15. Lucas, B. T., Liber, K., & Doig, L. E. (2015). Spatial and temporal trends in reservoir physicochemistry and phosphorus speciation within Lake Diefenbaker, a Great Plains reservoir, as inferred from depositional sediments. Journal of Great Lakes Research, 41, 67–80.  https://doi.org/10.1016/j.jglr.2015.07.009.CrossRefGoogle Scholar
  16. Machado, K. C., Grassi, M. T., Vidal, C., et al. (2016). A preliminary nationwide survey of the presence of emerging contaminants in drinking and source waters in Brazil. Science of the Total Environment, 572, 138–146.  https://doi.org/10.1016/J.SCITOTENV.2016.07.210.CrossRefGoogle Scholar
  17. Martínez, L. L. G., & Poleto, C. (2014). Assessment of diffuse pollution associated with metals in urban sediments using the geoaccumulation index (Igeo). Journal of Soils and Sediments, 14, 1251–1257.  https://doi.org/10.1007/s11368-014-0871-y.CrossRefGoogle Scholar
  18. Menegat R, Carraro CC (2009) Manual para saber por que o Guaíba é um lago: Análise integrada de geologia, geomorfologia, hidrografia, estratigrafia e história da ciência, 1st edn. Armazém Digital, Porto Alegre.Google Scholar
  19. Menegat, R., Porto, M. L., Carraro, C. C., & Fernandes, L. A. D. (2006). Atlas Ambiental de Porto Alegre (3rd ed.). Porto Alegre: UFRGS.Google Scholar
  20. Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geological, 2, 108–118.Google Scholar
  21. Nascimento, R. A., de Almeida, M., Escobar, N. C. F., et al. (2017). Sources and distribution of polycyclic aromatic hydrocarbons (PAHs) and organic matter in surface sediments of an estuary under petroleum activity influence, Todos os Santos Bay, Brazil. Marine Pollution Bulletin, 119, 223–230.  https://doi.org/10.1016/J.MARPOLBUL.2017.03.069.CrossRefGoogle Scholar
  22. Patinha, C., Durães, N., Dias, A. C., et al. (2018). Long-term application of the organic and inorganic pesticides in vineyards: environmental record of past use. Applied Geochemistry, 88, 226–238.  https://doi.org/10.1016/J.APGEOCHEM.2017.05.014.CrossRefGoogle Scholar
  23. Poleto, C., Bortoluzzi, E. C., Charlesworth, S. M., & Merten, G. H. (2009). Urban sediment particle size and pollutants in Southern Brazil. Journal of Soils and Sediments, 9, 317–327.  https://doi.org/10.1007/s11368-009-0102-0.CrossRefGoogle Scholar
  24. Qu, M., Li, H., Li, N., et al. (2017). Distribution of atrazine and its phytoremediation by submerged macrophytes in lake sediments. Chemosphere, 168, 1515–1522.  https://doi.org/10.1016/J.CHEMOSPHERE.2016.11.164.CrossRefGoogle Scholar
  25. Sakan, S., Ostojić, B., & Đorđević, D. (2017). Persistent organic pollutants (POPs) in sediments from river and artificial lakes in Serbia. Journal of Geochemical Exploration, 180, 91–100.  https://doi.org/10.1016/J.GEXPLO.2017.06.008.CrossRefGoogle Scholar
  26. Sangster, J. L., Oke, H., Zhang, Y., & Bartelt-Hunt, S. L. (2015). The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment. Journal of Hazardous Materials, 299, 112–121.  https://doi.org/10.1016/j.jhazmat.2015.05.046.CrossRefGoogle Scholar
  27. Scognamiglio, V., Antonacci, A., Patrolecco, L., et al. (2016). Analytical tools monitoring endocrine disrupting chemicals. TrAC Trends in Analytical Chemistry, 80, 555–567.  https://doi.org/10.1016/J.TRAC.2016.04.014.CrossRefGoogle Scholar
  28. Sharley, D. J., Sharp, S. M., Bourgues, S., & Pettigrove, V. J. (2016). Detecting long-term temporal trends in sediment-bound trace metals from urbanised catchments. Environmental Pollution, 219, 705–713.  https://doi.org/10.1016/j.envpol.2016.06.072.CrossRefGoogle Scholar
  29. Smol, J. P. (2008). Pollution of lakes and rivers: a paleoenvironmental perspective (2nd ed.). Malden: Blackwell Publishing.Google Scholar
  30. Soares, M. C. C., Mizusaki, A. M. P., Guerra, T., & Vignol, M. L. M. (2004). Análise geoquímica dos sedimentos de fundo do Arroio do Salso, Porto Alegre-RS-Brasil. Pesqui em Geociências, 31, 39–50.Google Scholar
  31. Tan, S., Wang, D., Chi, Z., et al. (2017). Study on the interaction between typical phthalic acid esters (PAEs) and human haemoglobin (hHb) by molecular docking. Environmental Toxicology and Pharmacology, 53, 206–211.  https://doi.org/10.1016/J.ETAP.2017.06.008.CrossRefGoogle Scholar
  32. Tansel, B., & Rafiuddin, S. (2016). Heavy metal content in relation to particle size and organic content of surficial sediments in Miami River and transport potential. International Journal of Sediment Research, 31, 324–329.  https://doi.org/10.1016/j.ijsrc.2016.05.004.CrossRefGoogle Scholar
  33. Terra, N. R., & Gonçalves, S. P. (2013). Daphnia magna Straus, 1820 response to sediment samples from a contaminated river ( Rio Grande do Sul, Brazil). Acta Limnologica Brasiliensia, 25, 19–33.  https://doi.org/10.1590/S2179-975X2013000100004.CrossRefGoogle Scholar
  34. USEPA - United States Environmental Protection Agency (2007) Method 3051A: microwave assisted acid digestion of sediments, sludges, soils, and oils. 30.Google Scholar
  35. Wan, D., Song, L., Yang, J., et al. (2016). Increasing heavy metals in the background atmosphere of central North China since the 1980s: evidence from a 200-year lake sediment record. Atmospheric Environment, 138, 183–190.  https://doi.org/10.1016/j.atmosenv.2016.05.015.CrossRefGoogle Scholar
  36. Wang, H., Wang, C., Wu, W., et al. (2003). Persistent organic pollutants in water and surface sediments of Taihu Lake, China and risk assessment. Chemosphere, 50, 557–562.  https://doi.org/10.1016/S0045-6535(02)00484-8.CrossRefGoogle Scholar
  37. Wirbisky, S. E., Weber, G. J., Sepúlveda, M. S., et al. (2016). An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring. Scientific Reports, 6, 21337.  https://doi.org/10.1038/srep21337.CrossRefGoogle Scholar
  38. Zhang, Z., Wang, J. J., Ali, A., & DeLaune, R. D. (2016). Heavy metals and metalloid contamination in Louisiana Lake Pontchartrain Estuary along I-10 bridge. Transportation Research Part D: Transport and Environment, 44, 66–77.  https://doi.org/10.1016/j.trd.2016.02.014.CrossRefGoogle Scholar
  39. Zhang, Y., Su, Y., Liu, Z., et al. (2017). Lipid biomarker evidence for determining the origin and distribution of organic matter in surface sediments of Lake Taihu, Eastern China. Ecological Indicators, 77, 397–408.  https://doi.org/10.1016/J.ECOLIND.2017.02.031.CrossRefGoogle Scholar
  40. Zhou, Z., Huang, T., Li, Y., et al. (2017). Sediment pollution characteristics and in situ control in a deep drinking water reservoir. Journal of Environmental Sciences, 52, 223–231.  https://doi.org/10.1016/j.jes.2016.05.006.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratory of Soil Bioremediation, Soil DepartmentUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Geographic Information System Laboratory, Soil DepartmentUFRGSPorto AlegreBrazil
  3. 3.Laboratory for Environmental AnalysisUniversity of GeorgiaAthensUSA
  4. 4.Soil DepartmentUFRGSPorto AlegreBrazil

Personalised recommendations