Advertisement

Habitat selection and prediction of the spatial distribution of the Chinese horseshoe bat (R. sinicus) in the Wuling Mountains

  • Liang Liang
  • Xiang Luo
  • Zhixiao Liu
  • Jiahui Wang
  • Ting Huang
  • Erzhu Li
Article
  • 23 Downloads

Abstract

Habitat selection by the Chinese horseshoe bat (Rhinolophus sinicus) in the Wuling Mountains was studied in this paper. Global positioning system (GPS), remote sensing (RS) and geographic information system (GIS) technologies were used to obtain ground survey data and analyse the habitat factors driving the distribution of R. sinicus. Based on these basic data, a binary logistic regression method was used to establish habitat selection models of R. sinicus. Then, the corrected Akaike information criterion (AICC) was used to screen an optimal model, and the Hosmer-Lemeshow test indicated that the optimal model has suitable goodness of fit. Finally, the optimal model was used to predict the spatial distribution of R. sinicus in the Wuling Mountains. Verification analysis showed that the overall accuracy of the model was 72.7% and that the area under the curve (AUC) value was 0.947, which indicated that the model was effective for predicting suitable habitat for R. sinicus. The model results also showed that the main factors that influenced habitat selection were slope, annual mean temperature and distances from roads, rivers and residential land. R. sinicus preferred areas far from roads and residential land and areas near rivers. Generally, higher values of slope and annual mean temperature were associated with a greater likelihood of R. sinicus presence. Therefore, the protection of the water bodies surrounding R. sinicus habitats and fully addressing the impacts of human activities on R. sinicus habitats are recommended to protect the survival and reproduction of the population.

Keywords

Habitat selection Spatial distribution prediction Rhinolophus sinicus Logistic regression model 

Notes

Acknowledgements

The authors particularly thank NASA for providing the basic data (including the Landsat series data and ASTER GDEM data) and the NGCC for providing the GlobeLand30 data.

Author contributions

L. Liang and Z. X. Liu proposed the main idea and offered guidance to complete the work. L. Liang and X. Luo wrote the paper. Z. X. Liu provided ground survey data. X. Luo, J. H. Wang, T. Huang and E. Z. Li carried out the data processing and analysis.

Funding

This research was supported by the National Natural Science Foundation of China (No. 31560130 and No. 41401473), the Natural Science Foundation of Jiangsu Province (BK20181474), the Open Fund of State Key Laboratory of Remote Sensing Science (OFSLRSS201804), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the 2018 Jiangsu Province Graduate Research and Innovation Project (KYCX18_2157).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdukerim, R., Zibibilla, G., Xu, Z. L., Nabi, E., & Abliz, A. (2016). Assessment of habitat suitability for Gazella subgutturosa in the Ebinur reserve. Acta Ecologica Sinica, 36, 4171–4177.Google Scholar
  2. Agosta, S. J., Morton, D., Marsh, B. D., & Kuhn, K. M. (2005). Nightly, seasonal, and yearly patterns of bat activity at night roosts in the central Appalachians. Journal of Mammalogy, 86(6), 1210–1219.CrossRefGoogle Scholar
  3. Akaike, H. (1973). Information Theory and an Extension of the Maximum Likelihood Principle. International Symposium on Information Theory, 1, 610–624.Google Scholar
  4. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.Google Scholar
  5. Atuo, F. A., & O’Connell, T. J. (2017). Structural heterogeneity affects raptor assemblages and niche characteristics in mixed-grass ecosystems. Ecosphere, 8(9), e01907.  https://doi.org/10.1002/ecs2.1907.CrossRefGoogle Scholar
  6. Atuo, F. A., Ivande, S. T., Wala, Z. J., Manu, S., & O’Connel, T. J. (2016). Current distribution, breeding population and habitat use of the globally threatened Grey-necked Picathartes Picathartes oreas in south-eastern Nigeria: a call for conservation action. Ostrich, 87(2), 101–112.CrossRefGoogle Scholar
  7. Bontadina, F (2002) Conservation ecology in the horseshoe bats Rhinolophus ferrumequinum and Rhinolopus hipposideros. Dissertation. University of Bern, Bern.Google Scholar
  8. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multi-model inference. New York: Springer ISBN 0-387-95364-7.Google Scholar
  9. Chen, W. X., Yang, X. R., & Li, Z. Q. (2015). The analysis of forest landscape patterns in east Dongting Lake region based on 3S technology. Chinese Agricultural Science Bulletin, 31, 1–9.Google Scholar
  10. Deng CL (2010) Theory and application for generalized linear models. Thesis, Guangxi University, Nanning, Guangxi, China.Google Scholar
  11. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z., Knowler, D. J., Leveque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L. J., & Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81, 163–182.CrossRefGoogle Scholar
  12. Fan, J. T., Li, J. S., Xia, R., Hu, L. L., Wu, X. P., & Li, G. (2014). Assessing the impact of climate change on the habitat distribution of the giant panda in the Qinling Mountains of China. Ecological Modelling, 274, 12–20.CrossRefGoogle Scholar
  13. Froidevaux, J., Zellweger, F., Bollmann, K., Jones, G., & Obrist, M. K. (2016). From field surveys to LiDAR: shining a light on how bats respond to forest structure. Remote Sensing of Environment, 175, 242–250.CrossRefGoogle Scholar
  14. Fu, Y. Q., Zhang, Z. W., Chen, B. P., & Ling, Z. W. (2011). Winter habitat characteristics of red-winged laughing thrush at Laojunshan National Nature Reserve in China. Chinese Journal of Zoology, 46, 48–54.Google Scholar
  15. Gaisler, J., Zukal, J., Rehak, Z., & Homolka, M. (1998). Habitat preference and flight activity of bats in a city. Journal of Zoology, 244, 439–445.CrossRefGoogle Scholar
  16. Gao, H., Tan, L. M., Liu, P., Liu, J. T., & Li, X. R. (2017). Estimation of arable land resources potential in hilly area of Taihang Mountain based on binary logistic regression model. Chinese Journal of Eco-Agriculture, 25, 490–497.Google Scholar
  17. Gerald, K., & Markus, M. (2009). Species-specific barrier effects of a motorway on the habitat use of two threatened forest-living bat species. Biological Conservation, 142, 270–279.CrossRefGoogle Scholar
  18. Goiti, U., Garin, I., Almenar, D., Salsamendi, E., & Aihartza, J. (2015). Foraging by Mediterranean horseshoe bats (Rhinolophus euryale) in relation to prey distribution and edge habitat. Journal of Mammalogy, 89, 493–502.CrossRefGoogle Scholar
  19. Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression. New York: Wiley ISBN 978-047-172-214-4.CrossRefGoogle Scholar
  20. Hurvich, C. M., Shumway, R., & Tsai C. (1990). Improved estimators of Kullback-Leibler information for autoregressive model selection in small samples. Biometrika, 77, 709–719.Google Scholar
  21. IUCN. (2016). The IUCN red list of threatened species. Version 2016-1. Retrieved from http://www.iucnredlist.org. Accessed 23 Oct 2016.
  22. Ji, R., Gao, Z. X., Xie, B. Y., Li, D. M., & Zeng, X. C. (2007). Prediction on oviposition site selection Locusta migratoria manilensis by logistic model in coastal areas. Acta Ecologica Sinica, 27, 5029–5037.Google Scholar
  23. Jiang GS (2007) Ecological effects of human disturbances on moose and roe deer and their adaptation mechanisms at multiple spatial scales. Dissertation, Northeast Forestry University, Haerbin, Heilongjiang, China.Google Scholar
  24. Kalda, O., Kalda, R., & Liira, J. (2015). Multi-scale ecology of insectivorous bats in agricultural landscapes. Agriculture, Ecosystems and Environment, 199, 105–113.CrossRefGoogle Scholar
  25. Kelly, R. M., Kitzes, J., Wilson, H., & Merenlender, A. (2016). Habitat diversity promotes bat activity in a vineyard landscape. Agriculture, Ecosystems and Environment, 223, 175–181.CrossRefGoogle Scholar
  26. Li, Y. C., Meng, Y. H., Zhang, L. C., & Ye, Q. (2005). Analysis of environmental factors on geographical distribution of Chinese Chiroptera. Acta Zoologica Sinica, 51, 413–422.Google Scholar
  27. Li, H., Gong, Z. N., Zhao, W. J., & Gong, H. L. (2012). Driving forces analysis of reservoir wetland evolution in Beijing based on logistic regression model. Acta Geographica Sinica, 67, 357–367.Google Scholar
  28. Li, G. Q., Liu, C. C., Liu, Y. G., Yang, J., Zhang, X. S., & Guo, K. (2013). Advances in theoretical issues of species distribution models. Acta Ecologica Sinica, 33, 4827–4835.CrossRefGoogle Scholar
  29. Li, C., Yang, D. D., Zhang, Y. M., Song, Y. C., Li, P. F., & Jiang, Z. G. (2016). Seasonal variation in nocturnal bed-site selection by Milu (Elaphurus davidianus) in Hubei Shishou Milu National Nature Reserve, China. Biodiversity Science, 24, 1031–1038.CrossRefGoogle Scholar
  30. Liang, L., Di, L. P., Zhang, L. P., Deng, M. X., Qin, Z. H., Zhao, S. H., & Lin, H. (2015). Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sensing of Environment, 165, 123–134.CrossRefGoogle Scholar
  31. Liang, L., Qin, Z. H., Zhao, S. H., Di, L. P., Zhang, C., Deng, M. X., Lin, H., Zhang, L. P., Wang, L. J., & Liu, Z. X. (2016). Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method. International Journal of Remote Sensing, 37, 2923–2949.CrossRefGoogle Scholar
  32. Liang, L., Sun, Q., Luo, X., Wang, J. H., Zhang, L. P., Deng, M. X., Di, L. P., & Liu, Z. X. (2017). Long-term spatial and temporal variations of vegetative drought based on vegetation condition index in China. Ecosphere, 8(8), e01919.Google Scholar
  33. Liu, W., Wang, Y. X., He, X. H., & Niu, H. X. (2011). Distribution and analysis of importance of underground habitats of cave-dwelling bats in the south of Taihang Mountain. Acta Theriologica Sinica, 31, 371–379.Google Scholar
  34. Lumsden, L. F., Bennett, A. F., & Silins, J. E. (2002). Location of roosts of the lesser long-eared bat Nyctophilus geoffroyi, and Gould’s wattled bat Chalinolobus gouldii, in a fragmented landscape in south-eastern Australia. Biological Conservation, 106(2), 237–249.CrossRefGoogle Scholar
  35. Mcconnell, S., O’Connell, T. J., & Leslie, D. M. (2008). Land cover associations of nesting territories of three sympatric Buteos in shortgrass prairie. Wilson Journal of Ornithology, 120(4), 708–716.CrossRefGoogle Scholar
  36. Miková, E., Varcholová, K., Boldogh, S., & Uhrin, M. (2013). Winter diet analysis in Rhinolophus euryale, (Chiroptera). Central European Journal of Biology, 8, 848–853.Google Scholar
  37. Montechiesi, L., Cocconcelli, M., & Rubini, R. (2016). Artificial immune system via Euclidean distance minimization for anomaly detection in bearings. Mechanical Systems and Signal Processing, 76-77, 380–393.CrossRefGoogle Scholar
  38. Ouyang, Z. Y., Liu, J. G., Xiao, H., Tan, Y. C., & Zhang, H. M. (2011). An assessment of giant panda habitat in Wolong Nature Reserve. Acta Ecologica Sinica, 21, 1869–1874.Google Scholar
  39. Qin, A. L., Liu, B., Guo, Q. S., Bussmannn, R. W., Ma, F. Q., Jian, Z. J., Xu, G. X., & Pei, S. X. (2017). Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis, Franch. An extremely endangered conifer from southwestern China. Global Ecology and Conservation, 10, 139–146.CrossRefGoogle Scholar
  40. Shu, X. J., Chen, Y. B., & Ren, Q. W. (2010). Model selection criteria for flood frequency analysis. Journal of Hydraulic Engineering, 41, 80–85.Google Scholar
  41. Sukumal, N., Gale, G. A., & Savini, T. (2010). Sub-montane habitat selection by a lowland pheasant. The Raffles Bulletin of Zoology, 58, 391–401.Google Scholar
  42. Uhrin, M., Benda, P., & Kaňuch, P. (2017). Different responses of attic-dwelling bat species to landscape naturalness. Mammalian Biology, 82, 48–56.CrossRefGoogle Scholar
  43. Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277, 494–499.CrossRefGoogle Scholar
  44. Wang, Y. X. (2003). A complete checklist of mammal species and subspecies in China, a taxonomic and geographic reference. Beijing: China Forestry Publishing House ISBN 978-750-383-131-7.Google Scholar
  45. Wang J (2009) Habitat selection and prediction of spatial distribution in greater horseshoe bats, Rhinolopinus ferrumquinum at multiple spatial scales. Dissertation, Northeast Normal University, Changchun, Jilin, China.Google Scholar
  46. Wang F (2010) Phylogeny and biogeography of the greater horseshoe bat in Henan. Thesis, Henan Normal University, Xinxiang, Henan, China.Google Scholar
  47. Wang, M. J., & Li, J. Q. (2008). Research on habitat restoration of giant panda after a grave disturbance of earthquake in Wanglang Nature Reserve, Sichuan Province. Acta Ecologica Sinica, 28, 5848–5855.CrossRefGoogle Scholar
  48. Wang, Y. S., Xie, B. Y., Wang, F. H., Xiao, Q. M., & Dai, L. Y. (2007). Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Science, 15, 365–372.CrossRefGoogle Scholar
  49. Wu, Z. J., He, G. J., Huang, S. L., Wang, M. M., & Lin, J. T. (2017). Terrain effects assessment on remotely sensed fractional vegetation cover in hilly area of southern China. Journal of Remote Sensing, 21, 159–167.Google Scholar
  50. Xie, L. F., Sun, K. P., Jiang, T. L., Liu, S., Lu, G. J., Jin, L. R., & Jiang, F. (2017). The effects of cultural drift on geographic variation in echolocation calls of the Chinese rufous horseshoe bat (Rhinolophus sinicus). Ethology, 123, 532–541.CrossRefGoogle Scholar
  51. Xu HL (2012) Sequence and organization of the complete mitochondrial genome of Hipposideros armiger, rhinolophus luctus, and Petaurista alborufus. Dissertation, Sichuan Agricultural University, Ya’an, Sichuan, China.Google Scholar
  52. Xu, Z. L., Peng, H. H., & Peng, S. Z. (2015). The development and evaluation of species distribution models. Acta Ecologica Sinica, 35, 557–567.CrossRefGoogle Scholar
  53. You, J., Leng, Z. M., & Ding, J. J. (2013). The development report of China contiguous destitute areas. Beijing: Social Sciences Academic Press.Google Scholar
  54. Yu, W. H., Fan, F. L., Jiang, H. S., Li, S. Y., Kong, X. K., & Wu, Y. (2015). Habitat selection of cave-bats in summer in Wuzhi Mountain, Hainan. Guangdong Forestry Science and Technology, 31, 74–79.Google Scholar
  55. Zhang, X. N., Wang, S. W., Feng, J., Hu, X. L., Liu, Y., He, X. H., & Shi, L. M. (2008). Recognition method of wavelet packets for echo-locating calls of flying rhinolophus lepidus and rhinolophus rouxi. Technical Acoustics, 27, 44–48.Google Scholar
  56. Zhang, D. D., Zhu, H. Q., Jiang, C. Y., Li, C., Zhang, X. D., Liu, C. F., Qu, D. J., & Guo, H. (2014). Research situation of impact factors on habitat selection of Siberian moschus moschiferus. Journal of Economic Animal, 18, 44–46.Google Scholar
  57. Zhou, Z. M., Yang, Y. M., & Chen, B. Q. (2017). Estimating the Spartina alterniflora fractional vegetation cover using high spatial resolution remote sensing in a coastal wetland. Acta Ecologica Sinica, 37, 505–512.CrossRefGoogle Scholar
  58. Zribia, M., Hegarat-Mascle, S. L., Taconet, O., Ciarletti, V., & Vidal-Madjar, D. (2003). Derivation of wild vegetation cover density in semi-arid regions: ERS2/SAR evaluation. International Journal of Remote Sensing, 24, 1335–1352.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Geography, Geomatics and PlanningJiangsu Normal UniversityXuzhouChina
  2. 2.School of Geographic and Oceanographic SciencesNanjing UniversityNanjingChina
  3. 3.College of Biology and Environment ScienceJishou UniversityJishouChina

Personalised recommendations