Size-dependent characteristics of diurnal particle concentration variation in an underground subway tunnel

  • Sang-Hee Woo
  • Jong Bum Kim
  • Gwi-Nam BaeEmail author
  • Moon Se Hwang
  • Gil Hun Tahk
  • Hwa Hyun Yoon
  • Soon-Bark Kwon
  • Duckshin Park
  • Se-Jin YookEmail author


Understanding characteristics of diurnal particle concentration variation in an underground subway tunnel is important to reduce subway passengers’ exposure to high levels of toxic particle pollution. In this study, real-time particle monitoring for eight consecutive days was done at a shelter located in the middle of a one-way underground subway tunnel in Seoul, Republic of Korea, during the summer of 2015. Particle mass concentration was measured using a dust monitor and particle number concentration using an optical particle counter. From the diurnal variations in PM10, PM2.5, and PM1, concentrations of particles larger than 0.54 μm optical particle diameter were affected by train frequency whereas those of particles smaller than 0.54 μm optical particle diameter were not changed by train frequency. Number concentration of particles smaller than 1.15 μm optical particle diameter was dependent on outdoor ambient air particle concentration level, whereas that of particles larger than 1.15 μm optical particle diameter was independent of outdoor ambient air due to low ventilation system transmission efficiency of micrometer-sized particles. In addition, an equation was suggested to predict the diurnal particle concentration in an underground tunnel by considering emission, ventilation, and deposition effects.


Aerosol PM Subway tunnel Train frequency 



This research was supported by the Railway Technology Research Project (18RTRP-B082486-05) from the Ministry of Land, Infrastructure and Transport, Republic of Korea.


  1. Aarnio, P., Yli-Tuomi, T., Kousa, A., Makela, T., Hirsikko, A., Hameri, K., et al. (2005). The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system. Atmospheric Environment, 39(28), 5059–−5066.CrossRefGoogle Scholar
  2. Barmparesos, N., Assimakopoulos, V. D., Assimakopoulos, M. N., & Tsairidi, E. (2016). Particulate matter levels and comfort conditions in the trains and platforms of the Athens underground metro. AIMS Environmental Science, 3(2), 199–219.CrossRefGoogle Scholar
  3. Birenzvige, A., Eversole, J., Seaver, M., Francesconi, S., Valdes, E., & Kulaga, H. (2003). Aerosol characteristics in a subway environment. Aerosol Science and Technology, 37, 210–220.CrossRefGoogle Scholar
  4. Braniš, M. (2006). The contribution of ambient sources to particulate pollution in spaces and trains of the Prague underground transport system. Atmospheric Environment, 40, 348–356.CrossRefGoogle Scholar
  5. Carteni, A., Cascetta, F., & Campana, S. (2015). Underground and ground-level particulate matter concentrations in an Italian metro system. Atmospheric Environment, 101, 328–337.CrossRefGoogle Scholar
  6. Chen, Z., Wang, K., Ai, Y. W., Li, W., Gao, H., & Fang, C. (2014). The effects of railway transportation on the enrichment of heavy metals in the artificial soil on railway cut slopes. Environmental Monitoring and Assessment, 186, 1039–1049.CrossRefGoogle Scholar
  7. Cheng, Y. H., Lin, Y. L., & Liu, C. C. (2008). Levels of PM10 and PM2.5 in Taipei rapid transit system. Atmospheric Environment, 42, 7242–7249.CrossRefGoogle Scholar
  8. Chillrud, S. N., Epstein, D., Ross, J. M., Sax, S. N., Pederson, D., Spengler, J. D., & Kinney, P. L. (2004). Elevated airborne exposure of teenagers to manganese, chromium, and iron from steel dust and New York city’s subway system. Environmental Science and Technology, 38, 732–737.CrossRefGoogle Scholar
  9. Coke, L. R., Sanchez, J. G., & Policastro, A. J. (2000). A model for dispersion of contaminants in the subway environment. Proceeding of the 10th International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels: Principles, Analysis, and Design, Boston 279−303.Google Scholar
  10. Fridell, E., Bjork, A., Ferm, M., & Ekberg, A. (2011). On-board measurements of particulate matter emissions from a passenger train. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 225(1), 99–106.CrossRefGoogle Scholar
  11. Furuya, K., Kudo, Y., Okinaga, K., Yamuki, M., Takahashi, S., Araki, Y., & Hisamatsu, Y. (2001). Seasonal variation and their characterization of suspended particulate matter in the air of subway stations. Journal of Trance and Microprobe Techniques, 19(4), 469–485.CrossRefGoogle Scholar
  12. Goldberg, D. L. (1989). Genetic algorithms in search, optimization, and machine learning. MA: Addison-Wesley.Google Scholar
  13. Han, H., Lee, J. Y., & Jang, K. J. (2015). Effect of platform screen doors on the indoor air environment of an underground subway station. Indoor and Built Environment, 24(5), 672–681.CrossRefGoogle Scholar
  14. Johansson, C., & Johansson, P. (2003). Particulate matter in the underground of Stockholm. Atmospheric Environment, 37, 3–9.CrossRefGoogle Scholar
  15. Jung, H., Kim, B., Ryu, J., Maskey, S., Kim, J., Sohn, J., et al. (2010). Source identification of particulate matter collected at underground subway stations in Seoul, Korea using quantitative single-particle analysis. Atmospheric Environment, 44, 2287–−2293.CrossRefGoogle Scholar
  16. Jung, H. J., Kim, B., Malek, M. A., Koo, Y. S., Jung, J. H., Son, Y. S., Kim, J. C., Kim, H. K., & Ro, C. U. (2012). Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea. Journal of Hazardous Materials, 213-214, 331–−340.CrossRefGoogle Scholar
  17. Kang, S., Hwang, H., Park, Y., Kim, H., & Ro, C. U. (2008). Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis. Environmental Science and Technology, 42, 9051–9057.CrossRefGoogle Scholar
  18. Karlsson, H. L., Nilsson, L., & Moller, L. (2005). Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells. Chemical Research in Toxicology, 18, 19–23.CrossRefGoogle Scholar
  19. Kim, K. Y., Kim, Y. S., Roh, Y. M., Lee, C. M., & Kim, C. N. (2008). Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul metropolitan subway stations. Journal of Hazardous Materials, 154, 440–443.CrossRefGoogle Scholar
  20. Kim, B., Jung, H. J., Song, Y. C., Lee, M. J., Kim, H. K., Kim, J. C., et al. (2010). Characterization of summertime aerosol particles collected at subway stations in Seoul, Korea using low-Z particle electron probe X-ray microanalysis. Asian Journal of Atmospheric Environment, 4-2, 97–−105.CrossRefGoogle Scholar
  21. Kwon, S. B., Jeong, W., Park, D., Kim, K. T., & Cho, K. H. (2015). A multivariate study for characterizing particulate matter (PM10, PM2.5, and PM1) in Seoul metropolitan subway stations, Korea. Journal of Hazardous Materials, 297, 295–303.CrossRefGoogle Scholar
  22. Kwon, S. B., Namgung, H. G., Jeong, W., Park, D., & Eom, J. K. (2016). Transient variation of aerosol size distribution in an underground subway station. Environmental Monitoring Assessment, 188, 362.CrossRefGoogle Scholar
  23. Lee, K. R., Kim, W. G., Woo, S. H., Kim, J. B., Bae, G. N., Park, H. K., Yoon, H. H., & Yook, S. J. (2016). Investigation of airflow and particle behavior around a subway train running in the underground tunnel. Aerosol Science and Technology, 50(7), 669–−678.CrossRefGoogle Scholar
  24. Martins, V., Moreno, T., Minguillon, M. C., Amato, F., Miguel, E., Capdevila, M., et al. (2015). Exposure to airborne particulate matter in the subway system. Science of the Total Environment, 511, 711–722.CrossRefGoogle Scholar
  25. Martins, V., Moreno, T., Minguillon, M. C., Drooge, B. L., Reche, C., Amato, F., et al. (2016a). Origin of inorganic and organic components of PM2.5 in subway stations of Barcelona, Spain. Environmental Pollution, 208, 125–136.Google Scholar
  26. Martins, V., Moreno, T., Mendes, L., Eleftheriadis, K., Diapouli, E., Alves, C. A., et al. (2016b). Factors controlling air quality in different European subway systems. Environmental Research, 146, 35–46.CrossRefGoogle Scholar
  27. Midander, K., Elihn, K., Wallen, A., Belova, L., Karlsson, A. B., & Wallinder, I. O. (2012). Characterisation of nano- and micron-sized airborne and collected subway particles, a multi-analytical approach. Science of the Total Environment, 427-428, 390–400.CrossRefGoogle Scholar
  28. Moreno, T., Martins, V., Querol, X., Jones, T., BeruBe, K., Minguillon, M. C., et al. (2015). A new look at inhalable metalliferous airborne particles on rail subway platforms. Science of the Total Environment, 505, 367–−375.CrossRefGoogle Scholar
  29. Namgung, H. G., Kim, J. B., Woo, S. H., Park, S., Kim, M., Kim, M. S., Bae, G. N., Park, D., & Kwon, S. B. (2016). Generation of nanoparticles from friction between railway brake disks and pads. Environmental Science and Technology, 50, 3453–3461.CrossRefGoogle Scholar
  30. Park, D. U., & Ha, K. C. (2008). Characteristics of PM10, PM2.5, CO2 and CO monitored in interiors and platforms of subway train in Seoul, Korea. Environmental International, 34, 629–634.CrossRefGoogle Scholar
  31. Park, J. H., Woo, H. Y., & Park, J. C. (2014). Major factors affecting the aerosol particulate concentration in the underground stations. Indoor and Built Environment, 23(5), 629–639.CrossRefGoogle Scholar
  32. Perrino, C., Marcovecchio, F., Tofful, L., & Canepari, S. (2015). Particulate matter concentration and chemical composition in the metro system of Rome, Italy. Environmental Science and Pollution Research, 22, 9204–9214.CrossRefGoogle Scholar
  33. Pfeifer, G. D., Harrison, R. M., & Lynam, D. R. (1999). Personal exposures to airborne metals in London taxi drivers and office workers in 1995 and 1996. The Science of the Total Environment, 235, 253–260.CrossRefGoogle Scholar
  34. Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., et al. (2002). Lung cancer, cardiopulmonary mortality and long-term exposure to fine particulate air pollution. Journal of the American Medical Association, 287, 1132–1141.CrossRefGoogle Scholar
  35. Pope III, C. A., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D., et al. (2004). Cardiovascular mortality and longterm exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation, 109, 71–77.CrossRefGoogle Scholar
  36. Querol, X., Moreno, T., Karanasiou, A., Reche, C., Alastuey, A., Viana, M., et al. (2012). Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmospheric Chemistry and Physics, 12, 5055–5076.CrossRefGoogle Scholar
  37. Reche, C., Moreno, T., Martins, V., Minguillon, M. C., Jones, T., Miguel, E., et al. (2017). Factors controlling particle number concentration and size at metro stations. Atmospheric Environment, 156, 169–−181.CrossRefGoogle Scholar
  38. Ripanucci, G., Grana, M., Vicentini, L., Magrini, A., & Bergamaschi, A. (2006). Dust in the underground railway tunnels of an Italian town. Journal of Occupational and Environmental Hygiene, 3, 16–25.CrossRefGoogle Scholar
  39. Salma, I., Weidinger, T., & Maenhaut, W. (2007). Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmospheric Environment, 41, 8391–8405.CrossRefGoogle Scholar
  40. Sanders, P. G., Xu, N., Dalka, T. M., & Maricq, M. M. (2003). Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle tests. Environmental Science and Technology, 37, 4060–4069.CrossRefGoogle Scholar
  41. Seaton, A., Cherrie, J., Dennekamp, M., Donaldson, K., Hurley, J. F., & Tran, C. L. (2005). The London underground: dust and hazards to health. Occupational and Environmental Medicine, 62, 355–362.CrossRefGoogle Scholar
  42. Walther, E., Bogdan, M., & Cohen, R. (2017). Modelling of airborne particulate matter concentration in underground stations using a two size-class conservation model. Science of the Total Environment, 607-608, 1313–1319.CrossRefGoogle Scholar
  43. Xu, B., Yu, X., Gu, H., Miao, B., Wang, M., & Huang, H. (2016). Commuters; exposure to PM2.5and CO2 in metro carriages of Shanghai metro system. Transportation Research Part D, 47, 162–170.CrossRefGoogle Scholar
  44. Ye, X., Lian, Z., Jiang, C., Zhou, Z., & Chen, H. (2010). Investigation of indoor environmental quality in Shanghai metro stations, China. Environmental Monitoring Assessment, 167, 643–651.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sang-Hee Woo
    • 1
    • 2
  • Jong Bum Kim
    • 2
  • Gwi-Nam Bae
    • 3
    Email author
  • Moon Se Hwang
    • 4
  • Gil Hun Tahk
    • 4
  • Hwa Hyun Yoon
    • 4
  • Soon-Bark Kwon
    • 5
  • Duckshin Park
    • 5
  • Se-Jin Yook
    • 1
    Email author
  1. 1.School of Mechanical EngineeringHanyang UniversitySeoulRepublic of Korea
  2. 2.Center for Environment, Health and Welfare ResearchKorea Institute of Science and TechnologySeoulRepublic of Korea
  3. 3.Center for Particulate Air Pollution and HealthKorea Institute of Science and TechnologySeoulRepublic of Korea
  4. 4.Technology Research CenterSeoul Metropolitan Rapid Transit CorporationSeoulRepublic of Korea
  5. 5.Transportation Environmental Research TeamKorea Railroad Research InstituteUiwangRepublic of Korea

Personalised recommendations