Assessing fire hazard potential and its main drivers in Mazandaran province, Iran: a data-driven approach

  • Hamed AdabEmail author
  • Azadeh Atabati
  • Sandra Oliveira
  • Ahmad Moghaddam Gheshlagh


Fires are a major disturbance to forest ecosystems and socioeconomic activities in Mazandaran province, northern Iran, particularly in the Hyrcanian forest sub-region. Mapping the spatial distribution of fire hazard levels and the most important influencing factors is crucial to enhance fire management strategies. In this research, MODIS hotspots were used to represent fire events covering Mazandaran Province over the period 2000–2016. We applied the ecological niche theory through the maximum entropy (MaxEnt) method to estimate fire hazard potential and the association with different anthropogenic and biophysical conditions, by applying different modeling approaches (heuristic, permutation, and jackknife metrics). Our results show that higher fire likelihood is related to density of settlements, distance to roads up to 3 km and to land cover types associated with agricultural activities, indicating a strong influence of human activities in fire occurrence in the region. To decrease fire hazard, prevention activities related to population awareness and the adjustment of farming practices need to be considered.


Structural fire hazard Maximum entropy MODIS active fire data Anthropogenic factors 


  1. Abdi, O., Kamkar, B., Shirvani, Z., Teixeira da Silva, J. A., & Buchroithner, M. F. (2016). Spatial-statistical analysis of factors determining forest fires: A case study from Golestan, Northeast Iran (pp. 1–14). Natural Hazards and Risk: Geomatics. Scholar
  2. Abdi, O., Kamkar, B., Shirvani, Z., Teixeira da Silva, J. A., & Buchroithner, M. F. (2018). Spatial-statistical analysis of factors determining forest fires: A case study from Golestan, Northeast Iran. Geomatics, Natural Hazards and Risk, 9(1), 267–280. Scholar
  3. Adab, H. (2017). Landfire hazard assessment in the Caspian Hyrcanian forest ecoregion with the long-term MODIS active fire data. Natural Hazards, 87(3), 1807–1825. Scholar
  4. Adab, H., Devi Kanniah, K., & Beringer, J. (2016). Estimating and up-scaling fuel moisture and leaf dry matter content of a temperate humid forest using multi resolution remote sensing data. Remote Sensing, 8(11), 961.Google Scholar
  5. Adab, H., Kanniah, K. D., Solaimani, K., & Sallehuddin, R. (2015). Modelling static fire hazard in a semi-arid region using frequency analysis. International Journal of Wildland Fire, 24(6), 763–777. Scholar
  6. Adel, M. N., Pourbabaei, H., & Dey, D. C. (2014). Ecological species group—environmental factors relationships in unharvested beech forests in the north of Iran. Ecological Engineering, 69, 1–7.Google Scholar
  7. Agee, J. K. (1996). Fire ecology of Pacific Northwest forests. Washington, D.C: Island press.Google Scholar
  8. Agee, J. K., Wakimoto, R. H., & Biswell, H. H. (1976). Fire and fuel dynamics of Sierra Nevada conifers. Forest Ecology and Management, 1, 255–265.Google Scholar
  9. Ajin, R., Loghin, A.-M., Vinod, P., & Jacob, M. (2016). Forest fire risk zone mapping using RS and GIS techniques: A study in Achankovil forest division, Kerala, India. [original article]. Journal of Earth, Environment and Health Sciences, 2(3), 109–115. Scholar
  10. Akhani, H., Djamali, M., Ghorbanalizadeh, A., & Ramezani, E. (2010). Plant biodiversity of Hyrcanian relict forests, N Iran: An overview of the flora, vegetation, palaeoecology and conservation. Pakistan Journal of Botany, 42, 231–258.Google Scholar
  11. Allard, G. B. (2001). The fire situation in Islamic Republic of Iran. Global Forest Fire Assessment 1990-2000 (pp. 495). Rome, Italy: FAO, Forestry Department.Google Scholar
  12. Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes, G., Leonardo, J., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728.Google Scholar
  13. Anderson, R. P., & Gonzalez Jr., I. (2011). Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecological Modelling, 222(15), 2796–2811.Google Scholar
  14. Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L., & Bradstock, R. A. (2013). Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences, 110(16), 6442–6447. Scholar
  15. Arino, O., Gross, D., Ranera, F., Leroy, M., Bicheron, P., Brockman, C., et al. (2007). GlobCover: ESA service for global land cover from MERIS. In Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International, (pp. 2412–2415): IEEE.Google Scholar
  16. Armenteras, D., Barreto, J. S., Tabor, K., Molowny-Horas, R., & Retana, J. (2017). Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries. Biogeosciences, 14(11), 2755–2765.Google Scholar
  17. Armién, A. G., Armién, B., Koster, F., Pascale, J. M., Avila, M., Gonzalez, P., et al. (2009). Hantavirus infection and habitat associations among rodent populations in agroecosystems of Panama: Implications for human disease risk. The American Journal of Tropical Medicine and Hygiene, 81(1), 59–66.Google Scholar
  18. Arpaci, A., Malowerschnig, B., Sass, O., & Vacik, H. (2014). Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Applied Geography, 53, 258–270. Scholar
  19. Baldwin, R. A. (2009). Use of maximum entropy modeling in wildlife research. Entropy, 11(4), 854–866.Google Scholar
  20. Bani Assadi, S., Kaboli, M., Etemad, V., Ghadiri Khanaposhtani, M., & Tohidifar, M. (2015). Habitat selection of cavity-nesting birds in the Hyrcanian deciduous forests of northern Iran. Ecological Research, 30(5), 889–897. Scholar
  21. Barros, A. M. G., Pereira, J. M. C. (2014). Wildfire Selectivity for Land Cover Type: Does Size Matter? PLoS ONE, 9(1), e84760. Scholar
  22. Bashari, H., Naghipour, A. A., Khajeddin, S. J., Sangoony, H., & Tahmasebi, P. (2016). Risk of fire occurrence in arid and semi-arid ecosystems of Iran: An investigation using Bayesian belief networks. Environmental Monitoring and Assessment, 188(9), 531. Scholar
  23. Bistinas, I., Oom, D., Sá, A. C., Harrison, S. P., Prentice, I. C., & Pereira, J. M. (2013). Relationships between human population density and burned area at continental and global scales. PLoS One, 8(12), e81188.Google Scholar
  24. Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73–77.Google Scholar
  25. Bottero, A., D'Amato, A. W., Palik, B. J., Bradford, J. B., Fraver, S., Battaglia, M. A., & Asherin, L. A. (2017). Density-dependent vulnerability of forest ecosystems to drought. Journal of Applied Ecology, 54(6), 1605–1614. Scholar
  26. Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’Antonio, C. M., DeFries, R., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Mack, M., Moritz, M. A., Pyne, S., Roos, C. I., Scott, A. C., Sodhi, N. S., & Swetnam, T. W. (2011). The human dimension of fire regimes on earth. Journal of Biogeography, 38(12), 2223–2236. Scholar
  27. Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., van der Werf, G. R., & Pyne, S. J. (2009). Fire in the earth system. Science, 324(5926), 481–484. Scholar
  28. Brotons, L., Thuiller, W., Araújo, M. B., & Hirzel, A. H. (2004). Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography, 27(4), 437–448.Google Scholar
  29. Brown, J. L. (2014). SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700.Google Scholar
  30. Brown, J. L., Bennett, J. R., & French, C. M. (2017). SDMtoolbox 2.0: The next generation python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ, 5, e4095.Google Scholar
  31. Brown, S., & Lugo, A. E. (1982). The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica, 14, 161–187.Google Scholar
  32. Caldararo, N. J. S. o.t. T. E. (2002). Human ecological intervention and the role of forest fires in human ecology. 292(3), 141–165.Google Scholar
  33. Carmo, M., Moreira, F., Casimiro, P., & Vaz, P. (2011). Land use and topography influences on wildfire occurrence in northern Portugal. Landscape and Urban Planning, 100(1–2), 169–176.Google Scholar
  34. Chandra, K., & Bhardwaj, A. K. (2015). Incidence of forest fire in India and its effect on terrestrial ecosystem dynamics, nutrient and microbial status of soil. International Journal of Agriculture and Forestry, 5(2), 69–78.Google Scholar
  35. Chen, F., Du, Y., Niu, S., & Zhao, J. (2015). Modeling forest lightning fire occurrence in the Daxinganling mountains of northeastern China with MAXENT. Forests, 6(5), 1422–1438.Google Scholar
  36. Chuvieco, E., Martínez, S., Román, M. V., Hantson, S., & Pettinari, M. L. (2014). Integration of ecological and socio-economic factors to assess global vulnerability to wildfire. Global Ecology and Biogeography, 23(2), 245–258. Scholar
  37. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.Google Scholar
  38. Connor, C. D. O., Calkin, D. E., & Thompson, M. P. (2017). An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management. International Journal of Wildland Fire, 26(7), 587–597. Scholar
  39. Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., et al. (2015). System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geoscientific Model Development Discussions, 8(2), 2271–2312.Google Scholar
  40. Curt, T., & Delcros, P. (2010). Managing road corridors to limit fire hazard. A simulation approach in southern France. Ecological Engineering, 36(4), 457–465.Google Scholar
  41. De la Riva, J., Pérez-Cabello, F., Lana-Renault, N., & Koutsias, N. (2004). Mapping wildfire occurrence at regional scale. Remote Sensing of Environment, 92(3), 363–369.Google Scholar
  42. Devisscher, T., Anderson, L. O., Aragão, L. E., Galván, L., & Malhi, Y. (2016). Increased wildfire risk driven by climate and development interactions in the Bolivian Chiquitania, Southern Amazonia. PLoS One, 11(9), e0161323.Google Scholar
  43. Dimitrakopoulos, A. P. (2002). Mediterranean fuel models and potential fire behaviour in Greece. International Journal of Wildland Fire, 11(2), 127–130. Scholar
  44. Dwyer, E., Grégoire, J.-M., & Pereira, J. M. C. (2000). Climate and vegetation as driving factors in global fire activity. In J. L. Innes, M. Beniston, & M. M. Verstraete (Eds.), Biomass burning and its inter-relationships with the climate system (pp. 171–191). Dordrecht: Springer Netherlands.Google Scholar
  45. Earl, D. E. (1975). Forest energy and economic development. Clarendon Press.Google Scholar
  46. Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151.Google Scholar
  47. Emadi, M., Shahriari, A. R., Sadegh-Zadeh, F., Jalili Seh-Bardan, B., & Dindarlou, A. (2016). Geostatistics-based spatial distribution of soil moisture and temperature regime classes in Mazandaran province, northern Iran. Archives of Agronomy and Soil Science, 62(4), 502–522. Scholar
  48. Eshliki, S. A., & Kaboudi, M. (2012). Community perception of tourism impacts and their participation in tourism planning: A case study of Ramsar, Iran. Procedia - Social and Behavioral Sciences, 36, 333–341. Scholar
  49. Eskandari, S., & Chuvieco, E. (2015). Fire danger assessment in Iran based on geospatial information. International Journal of Applied Earth Observation and Geoinformation, 42, 57–64.Google Scholar
  50. FAO (2015). Global forest resources assessment 2015—desk reference. (pp. 253). Rome: FAO/UN.Google Scholar
  51. Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International journal of climatology, n/a-n/a, 37, 4302–4315. Scholar
  52. Flannigan, M. D., Amiro, B. D., Logan, K. A., Stocks, B., & Wotton, B. (2006). Forest fires and climate change in the 21 st century. Mitigation and Adaptation Strategies for Global Change, 11(4), 847–859.Google Scholar
  53. Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M., & Gowman, L. M. (2009). Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 18(5), 483–507.Google Scholar
  54. Franklin, J. (2010). Mapping species distributions: Spatial inference and prediction. Cambridge: Cambridge University Press.Google Scholar
  55. Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel, M., & Lampin, C. (2013). A review of the main driving factors of forest fire ignition over Europe. Environmental Management, 51(3), 651–662.Google Scholar
  56. Giglio, L., Randerson, J. T., & Werf, G. R. (2013). Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences, 118(1), 317–328.Google Scholar
  57. Giglio, L., Schroeder, W., & Justice, C. O. (2016). The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 178, 31–41. Scholar
  58. Grégoire, J.-M., Eva, H. D., Belward, A. S., Palumbo, I., Simonetti, D., & Brink, A. (2013). Effect of land-cover change on Africa's burnt area. International Journal of Wildland Fire, 22(2), 107.Google Scholar
  59. Guillera-Arroita, G., Lahoz-Monfort, J. J., & Elith, J. (2014). Maxent is not a presence–absence method: A comment on Thibaud et al. Methods in Ecology and Evolution, 5(11), 1192–1197.Google Scholar
  60. Guo, F., Su, Z., Wang, G., Sun, L., Tigabu, M., Yang, X., et al. (2017). Understanding fire drivers and relative impacts in different Chinese forest ecosystems. Science of the Total Environment, 605, 411–425.Google Scholar
  61. Hantson, S., Lasslop, G., Kloster, S., & Chuvieco, E. (2015). Anthropogenic effects on global mean fire size. International Journal of Wildland Fire, 24(5), 589–596. Scholar
  62. Hantson, S., Padilla, M., Corti, D., & Chuvieco, E. (2013). Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sensing of Environment, 131, 152–159.Google Scholar
  63. Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773–785.Google Scholar
  64. Itziar, R. U., Gonzalo, Z., Joaquín, B., José, M. G., Jesús San, M.-A., Andrea, C., et al. (2015). Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. Environmental Research Letters, 10(11), 114013.Google Scholar
  65. Jafarzadeh, A. A., Mahdavi, A., & Jafarzadeh, H. (2017). Evaluation of forest fire risk using the Apriori algorithm and fuzzy c-means clustering. Journal of Forest Science, 63(8), 370–380.Google Scholar
  66. Jahdi, R., Salis, M., Darvishsefat, A. A., Alcasena, F., Mostafavi, M. A., Etemad, V., Lozano, O. M., & Spano, D. (2016). Evaluating fire modelling systems in recent wildfires of the Golestan National Park, Iran. Forestry: An International Journal of Forest Research, 89(2), 136–149. CrossRefGoogle Scholar
  67. Justice, C., Giglio, L., Korontzi, S., Owens, J., Morisette, J., Roy, D., et al. (2002). The MODIS fire products. Remote Sensing of Environment, 83(1), 244–262.Google Scholar
  68. Kadej, M., Zając, K., Smolis, A., Tarnawski, D., Tyszecka, K., Malkiewicz, A., et al. (2017). The great capricorn beetle Cerambyx cerdo L. in south-western Poland—The current state and perspectives of conservation in one of the recent distribution centres in Central Europe. Nature Conservation, 19, 111–134. Scholar
  69. Kasischke, E. S., Verbyla, D. L., Rupp, T. S., McGuire, A. D., Murphy, K. A., Jandt, R., Barnes, J. L., Hoy, E. E., Duffy, P. A., Calef, M., & Turetsky, M. R. (2010). Alaska’s changing fire regime—Implications for the vulnerability of its boreal forests this article is one of a selection of papers from the dynamics of change in Alaska’s boreal forests: Resilience and vulnerability in response to climate warming. Canadian Journal of Forest Research, 40(7), 1313–1324.Google Scholar
  70. Ketterings, Q. M., & Bigham, J. M. (2000). Soil color as an indicator of slash-and-burn fire severity and soil fertility in Sumatra, Indonesia. Soil Science Society of America Journal, 64(5), 1826–1833.Google Scholar
  71. Kibria, A. S., Behie, A., Costanza, R., Groves, C., & Farrell, T. (2017). The value of ecosystem services obtained from the protected forest of Cambodia: The case of Veun Sai-Siem Pang National Park. Ecosystem Services, 26, 27–36.Google Scholar
  72. Knorr, W., Kaminski, T., Arneth, A., & Weber, U. (2014). Impact of human population density on fire frequency at the global scale. Biogeosciences, 11(4), 1085–1102. Scholar
  73. Korontzi, S., McCarty, J., Loboda, T., Kumar, S., & Justice, C. (2006). Global distribution of agricultural fires in croplands from 3 years of moderate resolution imaging spectroradiometer (MODIS) data. Global Biogeochemical Cycles, 20(2).Google Scholar
  74. Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A. K., Augeri, D. M., Cheyne, S. M., Hearn, A. J., Ross, J., Macdonald, D. W., Mathai, J., Eaton, J., Marshall, A. J., Semiadi, G., Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J. W., Breitenmoser-Wuersten, C., Belant, J. L., Hofer, H., & Wilting, A. (2013). The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19(11), 1366–1379.Google Scholar
  75. Krawchuk, M., & Moritz, M. (2014). Burning issues: Statistical analyses of global fire data to inform assessments of environmental change. Environmetrics, 25(6), 472–481.Google Scholar
  76. Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J., & Hayhoe, K. (2009). Global pyrogeography: The current and future distribution of wildfire. PLoS One, 4(4), e5102.Google Scholar
  77. Kumar, S., & Stohlgren, T. J. (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and the Natural Environment, 1(4), 094–098.Google Scholar
  78. Lentz, D. L., Bye, R., & Sánchez-Cordero, V. (2008). Ecological niche modeling and distribution of wild sunflower (Helianthus annuus L.) in Mexico. International Journal of Plant Sciences, 169(4), 541–549.Google Scholar
  79. Lezama-Ochoa, N., Murua, H., Chust, G., Van Loon, E., Ruiz, J., Hall, M., et al. (2016). Present and future potential habitat distribution of Carcharhinus falciformis and Canthidermis maculata by-catch species in the tropical tuna purse-seine fishery under climate change. [original research]. Frontiers in Marine Science, 3(34).
  80. Littell, J. S., McKenzie, D., Peterson, D. L., & Westerling, A. L. (2009). Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecological Applications, 19(4), 1003–1021.Google Scholar
  81. Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3), 385–393.Google Scholar
  82. Louzao, M., Delord, K., García, D., Boué, A., & Weimerskirch, H. (2012). Protecting persistent dynamic oceanographic features: Transboundary conservation efforts are needed for the critically endangered balearic shearwater. PLoS One, 7(5), e35728.Google Scholar
  83. MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Andrew Royle, J., & Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83(8), 2248–2255.Google Scholar
  84. MacMillan, R., & Shary, P. (2008). Geomorphometry: Concepts, software, applications. Elsevier Science. Chap. Landforms and Landforms elements in geomorphometry.Google Scholar
  85. Mahdavi, A. (2012). Forests and rangelands? Wildfire risk zoning using GIS and AHP techniques. Caspian Journal of Environmental Sciences, 10(1), 43–52.Google Scholar
  86. Mahdavi, A., & Naghdi, R. (2007). Information and data flow analysis for forestry sector in Iran as a basic requirement for designing a forest information system (FIS). Caspian Journal of Environmental Sciences, 5(2), 147–153.Google Scholar
  87. Marchal, J., Cumming, S. G., & McIntire, E. J. (2017). Land cover, more than monthly fire weather, drives fire-size distribution in southern Québec forests: Implications for fire risk management. PLoS One, 12(6), e0179294.Google Scholar
  88. Martínez-Fernández, J., Chuvieco, E., & Koutsias, N. (2013). Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Natural Hazards and Earth System Sciences, 13(2), 311–327.Google Scholar
  89. Massada, A. B., Syphard, A. D., Stewart, S. I., & Radeloff, V. C. (2013). Wildfire ignition-distribution modelling: A comparative study in the Huron–Manistee National Forest, Michigan, USA. International Journal of Wildland Fire, 22(2), 174–183.Google Scholar
  90. Matthews, S. (2014). Dead fuel moisture research: 1991–2012. International Journal of Wildland Fire, 23(1), 78–92.Google Scholar
  91. Miller, R. H., Masuoka, P., Klein, T. A., Kim, H.-C., Somer, T., & Grieco, J. (2012). Ecological niche modeling to estimate the distribution of Japanese encephalitis virus in Asia. PLoS Neglected Tropical Diseases, 6(6), e1678.Google Scholar
  92. Mirzaei, R. (2013). Modeling the socioeconomic and environmental impacts of nature-based tourism to the host communities and their support for tourism : perceptions of local population, Mazandaran, north of Iran. Universitätsbibliothek, Gießen.Google Scholar
  93. Modugno, S., Balzter, H., Cole, B., & Borrelli, P. (2016). Mapping regional patterns of large forest fires in wildland–urban interface areas in Europe. Journal of Environmental Management, 172, 112–126. Scholar
  94. Mohammadi, F., Bavaghar, M. P., & Shabanian, N. (2014). Forest fire risk zone modeling using logistic regression and GIS: An Iranian case study. Small-scale Forestry, 13(1), 117–125. Scholar
  95. Monserud, R. A., & Leemans, R. (1992). Comparing global vegetation maps with the kappa statistic. Ecological Modelling, 62(4), 275–293.Google Scholar
  96. Moreira, F., Vaz, P., Catry, F., & Silva, J. S. (2009). Regional variations in wildfire susceptibility of land-cover types in Portugal: Implications for landscape management to minimize fire hazard. International Journal of Wildland Fire, 18(5), 563–574.Google Scholar
  97. Najafabadi, A. T. P., Gorgani, F., & Najafabadi, M. O. (2015). Modeling forest fires in Mazandaran Province, Iran. Journal of Forestry Research, 26(4), 851–858. Scholar
  98. Nami, M., Jaafari, A., Fallah, M., & Nabiuni, S. (2018). Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. International journal of Environmental Science and Technology, 15(2), 373–384.Google Scholar
  99. Nilsson, K., Sangster, M., & Konijnendijk, C. C. (2011). Forests, trees and human health and well-being: Introduction. In Forests, trees and human health (pp. 1–19): Springer.Google Scholar
  100. Nunes, A., Lourenço, L., & Meira, A. C. (2016). Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Science of the Total Environment, 573, 1190–1202.Google Scholar
  101. Oliveira, S., Félix, F., Nunes, A., Lourenço, L., Laneve, G., & Sebastián-López, A. (2018). Mapping wildfire vulnerability in Mediterranean Europe. Testing a stepwise approach for operational purposes. Journal of Environmental Management, 206, 158–169. Scholar
  102. Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., & Pereira, J. M. (2012). Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Forest Ecology and Management, 275, 117–129.Google Scholar
  103. Oliveira, S., Pereira, J. M. C., San-Miguel-Ayanz, J., & Lourenço, L. (2014). Exploring the spatial patterns of fire density in southern Europe using geographically weighted regression. Applied Geography, 51, 143–157. Scholar
  104. Oliveira, S., Zêzere, J. L., Queirós, M., & Pereira, J. M. (2017). Assessing the social context of wildfire-affected areas. The case of mainland Portugal. Applied Geography, 88, 104–117.Google Scholar
  105. Özbayoğlu, A. M., & Bozer, R. (2012). Estimation of the burned area in forest fires using computational intelligence techniques. Procedia Computer Science, 12, 282–287.Google Scholar
  106. Pahlavani, P., & Bigdeli, B. (2017). Providing the fire risk map in forest area using a geographically weighted regression model with gaussin kernel and modis images, a case study: Golestan Province. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.Google Scholar
  107. Parente, J., Pereira, M. G., & Tonini, M. (2016). Space-time clustering analysis of wildfires: The influence of dataset characteristics, fire prevention policy decisions, weather and climate. Science of the Total Environment, 559(Supplement C), 151–165. Scholar
  108. Parisien, M.-A., Miller, C., Parks, S. A., DeLancey, E. R., Robinne, F.-N., & Flannigan, M. D. (2016). The spatially varying influence of humans on fire probability in North America. Environmental Research Letters, 11(7), 075005.Google Scholar
  109. Parisien, M.-A., & Moritz, M. A. (2009). Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs, 79(1), 127–154.Google Scholar
  110. Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102–117.Google Scholar
  111. Penman, T. D., Bradstock, R. A., & Price, O. (2013). Modelling the determinants of ignition in the Sydney Basin, Australia: Implications for future management. International Journal of Wildland Fire, 22(4), 469–478. Scholar
  112. Pereira, M. G., Aranha, J., & Amraoui, M. (2014). Land cover fire proneness in Europe. Forest Systems, 23(3), 598.Google Scholar
  113. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231–259.Google Scholar
  114. Reed, D. J., Spencer, T., Murray, A. L., French, J. R., & Leonard, L. (1999). Marsh surface sediment deposition and the role of tidal creeks: Implications for created and managed coastal marshes. Journal of Coastal Conservation, 5(1), 81–90.Google Scholar
  115. Renard, Q., Pélissier, R., Ramesh, B. R., & Kodandapani, N. (2012). Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. International Journal of Wildland Fire, 21(4), 368–379. Scholar
  116. Richards, S. A., Possingham, H. P., & Tizard, J. (1999). Optimal fire management for maintaining community diversity. Ecological Applications, 9(3), 880–892.[0880:OFMFMC]2.0.CO;2.Google Scholar
  117. Rodrigues, M., & de la Riva, J. (2014). An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environmental Modelling & Software, 57, 192–201.Google Scholar
  118. Romero-Calcerrada, R., Novillo, C., Millington, J., & Gomez-Jimenez, I. (2008). GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landscape Ecology, 23(3), 341–354.Google Scholar
  119. Ruiz-Mirazo, J., Martínez-Fernández, J., & Vega-García, C. J. J. o. e. m. (2012). Pastoral wildfires in the Mediterranean: Understanding their linkages to land cover patterns in managed landscapes. 98, 43–50.Google Scholar
  120. Russo, A., Gouveia, C. M., Páscoa, P., DaCamara, C. C., Sousa, P. M., & Trigo, R. M. (2017). Assessing the role of drought events on wildfires in the Iberian Peninsula. Agricultural and Forest Meteorology, 237–238(Supplement C), 50–59. Scholar
  121. San-Miguel-Ayanz, J., Rodrigues, M., de Oliveira, S. S., Pacheco, C. K., Moreira, F., Duguy, B., et al. (2012). Land cover change and fire regime in the European Mediterranean region. In Post-fire management and restoration of southern European forests (pp. 21–43): Springer.Google Scholar
  122. Satir, O., Berberoglu, S., & Donmez, C. (2016). Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomatics, Natural Hazards and Risk, 7(5), 1645–1658. Scholar
  123. Satoh, K., Song, W., & Yang, K. T. (2004) A study of forest fire danger prediction system in Japan. In Proceedings. 15th International Workshop on Database and Expert Systems Applications, 2004., 30 Aug.-3 Sept. 2004 (pp. 598–602). doi:
  124. Scharnweber, T., Rietschel, M., & Manthey, M. (2007). Degradation stages of the Hyrcanian forests in southern Azerbaijan. Archiv für Naturschutz und Landschaftsforschung, 46(2), 133–156.Google Scholar
  125. Schoennagel, T., Veblen, T. T., & Romme, W. H. (2004). The interaction of fire, fuels, and climate across Rocky Mountain forests. BioScience, 54(7), 661–676.[0661:TIOFFA]2.0.CO;2.Google Scholar
  126. Shafiei, A. B., Akbarinia, M., Jalali, G., & Hosseini, M. (2010). Forest fire effects in beech dominated mountain forest of Iran. Forest Ecology and Management, 259(11), 2191–2196.Google Scholar
  127. Shvidenko, A., & Gonzalez, P. (2005). Forest and woodland systems. In R. Hassan, R. Scholes, & N. Ash (Eds.), Ecosystems and human well-being: Current state and trends, vol 1. Findings of the condition and trends working group of the Millennium Ecosystem Assessment (pp. 587–621). Washington, DC: Island Press.Google Scholar
  128. Silva, J. S., Moreira, F., Vaz, P., Catry, F., & Godinho-Ferreira, P. (2009). Assessing the relative fire proneness of different forest types in Portugal. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 143(3), 597–608.Google Scholar
  129. Small, R. D., & Bush, B. W. (1985). Smoke production from multiple nuclear explosions in nonurban areas. Science, 229(4712), 465–469. Scholar
  130. Sobhani, A., & Khosravi, H. (2015). Assessing environmental sensitivity areas to desertification in north of Iran. Current World Environment, 10(3), 890–902.Google Scholar
  131. Sørensen, R., Zinko, U., & Seibert, J. (2006). On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences, 10(1), 101–112.Google Scholar
  132. Stohlgren, T. J. (1988). Litter dynamics in two Sierran mixed conifer forests. I. Litterfall and decomposition rates. Canadian Journal of Forest Research, 18(9), 1127–1135.Google Scholar
  133. Šturm, T., & Podobnikar, T. (2017). A probability model for long-term forest fire occurrence in the Karst forest management area of Slovenia. International Journal of Wildland Fire, 26(5), 399–412. Scholar
  134. Syphard, A. D., Radeloff, V. C., Keeley, J. E., Hawbaker, T. J., Clayton, M. K., Stewart, S. I., & Hammer, R. B. (2007). Human influence on California fire regimes. Ecological Applications, 17(5), 1388–1402. Scholar
  135. Syphard, A. D., Radeloff, V. C., Keuler, N. S., Taylor, R. S., Hawbaker, T. J., Stewart, S. I., & Clayton, M. K. (2008). Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire, 17(5), 602.Google Scholar
  136. Tachikawa, T., Hato, M., Kaku, M., & Iwasaki, A. (2011). Characteristics of ASTER GDEM version 2. In Geoscience and remote sensing symposium (IGARSS), 2011 IEEE international, (pp. 3657–3660): IEEE.Google Scholar
  137. Tien Bui, D., Bui, Q.-T., Nguyen, Q.-P., Pradhan, B., Nampak, H., & Trinh, P. T. (2017). A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology, 233, 32–44. Scholar
  138. Tien Bui, D., Le, K.-T. T., Nguyen, V. C., Le, H. D., & Revhaug, I. (2016). Tropical forest fire susceptibility mapping at the cat Ba National Park Area, Hai Phong City, Vietnam, using GIS-based kernel logistic regression. Remote Sensing, 8(4), 347.Google Scholar
  139. UNISDR, U. Sendai framework for disaster risk reduction 2015–2030. In 3rd United Nations World Conference on DRR, 2015: UNISDR Sendai, Japan.Google Scholar
  140. Vadrevu, K. P., Eaturu, A., & Badarinath, K. (2006). Spatial distribution of forest fires and controlling factors in Andhra Pradesh, India using spot satellite datasets. Environmental Monitoring and Assessment, 123(1–3), 75–96.Google Scholar
  141. Vadrevu, K. P., & Justice, C. (2011). Vegetation fires in the Asian region: Satellite observational needs and priorities. Global Environmental Research, 15(1), 65–76.Google Scholar
  142. Wimberly, M. C., & Reilly, M. J. (2007). Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery. Remote Sensing of Environment, 108(2), 189–197.Google Scholar
  143. Xu, D., Shao, G., Dai, L., Hao, Z., Tang, L., & Wang, H. (2006). Mapping forest fire risk zones with spatial data and principal component analysis. Science in China Series E: Technological Sciences, 49, 140–149.Google Scholar
  144. Zhang, Y., Lim, S., & Sharples, J. J. (2016). Modelling spatial patterns of wildfire occurrence in south-eastern Australia. Geomatics, Natural Hazards and Risk, 7(6), 1800–1815.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Geography and Environmental SciencesHakim Sabzevari UniversitySabzevarIran
  2. 2.Institute of Geography and Spatial PlanningUniversity of Lisbon (Universidade de Lisboa)LisbonPortugal
  3. 3.Faculty of AgronomyAutonomous University of SinaloaCuliacánMexico

Personalised recommendations