Cultivable microbiome and its resistance to antimicrobials isolated from Zaprionus indianus

  • Graziele Aparecida Fernandes da Cruz
  • Débora de Jesus Pires
  • Luiz Artur Mendes Bataus
  • Rassan Dyego Romão Silva
  • Mônica Santiago Barbosa
  • Raylane Pereira Gomes
  • Carla Afonso Silva Bitencourt Braga
  • Lilian Carla Carneiro


The objective of this study was to identify Z. indianus in PEJC and PESCAN. Listed are the following methods: to isolate bacteria from the integument of the Z. indianus species collected and to check the resistance of microorganisms to antibiotics. Collections of Z. indianus were performed in four seasons of the two parks. The results obtained suggest that the low amount of Z. indianus collected can be justified by environmental factors such as high average temperature and low average humidity. It is noted that there is a predominance of bacteria of the Enterobacteriaceae family found in both the PEJC and the PESCAN. The antibiogram performed for the isolated PEJC bacteria shows statistical significance when comparing the edge and inside values of the park. Studies with fungi were also carried out, and it was evidenced that Trichophyton spp. was the genus that most inhabited the two environments studied. The ability of fluconazole and ketoconazole to inhibit fungal growth was also investigated, and considering the concentration tested may suggest that they have good action spectra. Plasmid profile data show that 60% of antibiotic-resistant bacteria have plasmids. The values found show that Z. indianus can act as vectors of microorganisms that affect the healthy animals and humans and that these organisms may be influenced by seasons.


Bacteria Biodiversity Environmental Microorganism Resistance Vector 


Funding information

The authors thank the National Council for Scientific and Technological Development (CNPq) for granting scholarship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Agência ambiental de goiás (2005) Disponível em: http//ção/parques.php?parque=0000000055. Access in: 10 feb. 2017.
  2. Albazazi, R. I., & Bal, E. B. B. (2014). Microflora of digestive tract in poultry. KSU Journal Nature Science, 17(1), 39–42.Google Scholar
  3. Alekshum, M. N., & Levy, S. B. (2007). Molecular mechanisms of antibacterial multidrug resistance. Cell Cambridge, 128(6), 1037–1050.CrossRefGoogle Scholar
  4. ANVISA - Agência Nacional de Vigilância Sanitária (2004) Descrição dos Meios de Cultura Empregados nos Exames Microbiológicos- Módulo IV.Google Scholar
  5. Bennett, P. M. (2008). Plasmid encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria. British Journal of Pharmacology, 153(S1), S347–S357.CrossRefGoogle Scholar
  6. Cabral, J. P. S. (2010). Water microbiology. Bacterial pathogens and water. International Journal Environmental Residence Public Health, 7, 3657–3703.CrossRefGoogle Scholar
  7. Campos, S. R. C., Rieger, T. T., & Santos, J. F. (2007). Homology of polytene elements between Drosophila and Zaprionus determined by in situ hybridization in Zaprionus indianus. Genetic and Molecular Research, 6(2), 262–276.Google Scholar
  8. Cleverton, J. C., Hochmüller, M. L. S., Valente, V. L. S., & Schmitz, H. J. (2010). The drosophilid fauna (Diptera, Drosophilidae) of the transition between the Pampa and Atlantic Forest Biomes in the state of Rio Grande do Sul, southern Brazil: First records. Papéis Avulsos de Zoologia, 50(19), 285–295.Google Scholar
  9. CLSI, Clinical and Laboratory Standards Institute (2016) Normas de Desempenho para testes de sensibilidade antimicrobiana: 15 Suplemento Informativo. Documents M2 – M8 and M100 – S15, 24, 177.Google Scholar
  10. Doge JS, Gaiesky VLSV, Hofmann PLP (2006) Variação temperoral e espacial e influência do desflorestamento e do efeito de borda e assembleias de drosofilídeos de uma área de Mata Atlântica em Santa Catarina, Brasil. Dissertação de Mestrado. Universidade Federal do Rio Grande do Sul.Google Scholar
  11. Epsky, N. D., Gill, M. A., & Mangan, R. L. (2015). Grape juice as a bait for Anastrepha suspensa (Diptera: Tephritidae) and Zaprionus indianus (Diptera: Drosophilidae). Journal of Economic Entomology, 108, 2065–2073.CrossRefGoogle Scholar
  12. Ferreira LD, Lopes MG (2006) Carta de declividade da Serra de Caldas-GO. 96f Monografia (Graduação -Licenciatura Plena em Geografia) – Universidade Estadual de Goiás, Morrinhos.Google Scholar
  13. Garcia, C. F., Hochmüller, C. J. C., Valente, V. L. S., & Schmitz, H. J. (2012). Drosophilid assemblages at different urbanization levels in the City of Porto Alegre, state of Rio Grande do Sul, Southern Brazil. Neotropical Entomology, 41(1), 32–41.CrossRefGoogle Scholar
  14. Gilmore, M. S., Clewell, D. B., Ike, Y., & Shankar, N. (2014). Enterococci from commensals to leading causes of drug resistant infection (pp. 1–35). Boston: Massachusetts Eye and Ear Infirmary.Google Scholar
  15. Gomes, L. H., Echeverrigaray, S., Conti, J. H., Lourenço, M. V. M., & Duarte, K. M. R. (2003). Presence of the yeast Candida tropicalis in figs infected by the fruit fly Zaprionus indianus (Dip:. Drosophilidae). Brazililian Journal of Microbiology, 34, 125–130.CrossRefGoogle Scholar
  16. Gupta, J. P. (1970). Description of a new species of phorticella Zaprionus (Drosophilidae) from India. Proceedings the Indian national Science academy, 36(1), 62–65.Google Scholar
  17. Hendriksen, R. S., Price, L. B., Schupp, J. M., Gillece, J. D., Kaas, R. S., Engelthaler, D. M., Bortalaia, V., Pearson, T., Waters, A. E., Upadhyay, B. P., Shrestha, S. D., Adhikari, S., Shakya, G., Keim, P. S., & Aarestrup, F. M. (2011). Population genetics of Vibrio cholerae from Nepal in 2010: Evidence on the origin of the Haitian outbreak. mBio, 2(4), 157–111.CrossRefGoogle Scholar
  18. Hoang, D., Kopp, A., & Chandler, J. Á. (2015). Interactions between Drosophila and its natural yeast symbionts—Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship? Peer Journal, 3, e1116.CrossRefGoogle Scholar
  19. Hochmüller, C. J., Lopes-da-Silva, M., Valente, V. L. S., & Schmitz, H. J. (2010). The drosophilid fauna (Diptera, Drosophilidae) of the transition between the Pampa and Atlantic Forest Biomes in the state of Rio Grande do Sul, southern Brazil: First records. Papéis Avulsos de Zoologia, 50, 285–295.Google Scholar
  20. Joshi, N. K., Biddinger, D. J., Demchak, K., & Deppen, A. (2014). First report of Zaprionus indianus (Diptera: Drosophilidae) in commercial fruits and vegetables in Pennsylvania. Journal of Insect Science, 14(259), 1–4.Google Scholar
  21. Koneman, E. M., Allen, S. D., Janda, W. M., Schreckenberger, P. C., & Winn Junior, N. C. (2010). Diagnóstico Microbiológico (6th ed.pp. 81–86). Rio de Janeiro: Guanabara Koogan.Google Scholar
  22. Lima, T. A., Pinto, J. R. R., Lenza, E., & Pinto, A. S. P. (2010). Florística e estrutura da vegetação arbustivo-arbórea em uma área de cerrado rupestre no Parque Estadual da Serra de Caldas Novas, Goiás. Biota Neotroical, 10(2), 159–166.CrossRefGoogle Scholar
  23. Marchiori, C. H. (2014). Diptera of economic and sanitary importance collected on different substrates in southern Goiás, Brazil. International Journal of Advanced Technology and science, 1, 1–14.Google Scholar
  24. Martins RA, Santos EV, Ferreira IM (2009) Atualização do mapa remanescentes florestal do município de Morrinhos – GO: utilizando imagem LANDSAT – TM. In: XI EREGEO. Simpósio regional de geografia. Anais Jataí. UFG, 252–261.Google Scholar
  25. Mata, R. A., McGeoch, M., & Tidon, R. (2008). Drosophilid assemblages as a bioindicator system of human disturbance in the Brazilian savanna. Biodiversity and Conservation, 19, 2899–2916.CrossRefGoogle Scholar
  26. Matavelli, C., Carvalho, M. J., Martins, N. E., & Mirth, C. K. (2015). Differences in larval nutritional requirements and female oviposition preference reflect the order of fruit colonization of Zaprionus indianus and Drosophila simulans. Journal Insect Physiology, 82, 66–74.CrossRefGoogle Scholar
  27. Moura, A., Henriques, I., Smalla, K., & Correia, A. (2010). Wastewater bacterial communities bring together broad-host range plasmids, integrons and a wide diversity of uncharacterized gene cassettes. Research in Microbiology, 161(1), 58–66.CrossRefGoogle Scholar
  28. Ort, B. S., Bantay, R. M., Pantoja, N. A., & O’Grady, P. M. (2012). Fungal diversity associated with Hawaiian Drosophila host plants. PLoS One, 7(7), e40550.CrossRefGoogle Scholar
  29. Penariol, L. V., & Madi-Ravazzi, L. (2013). Edge-interior differences in the species richness and abundance of drosophilids in a semideciduous forest fragment. SpringerPlus, 2(1), 114.CrossRefGoogle Scholar
  30. Penariol LV, Ravazzi LM (2012) Traços quantitativos e abundância de drosofilídeos como indicadores de impacto ambiental em fragmentos de floresta estacional semidecidual. Tese (Doutorado) - Instituto de Biociência, Letras e Ciências Exatas, São José do Rio Preto.Google Scholar
  31. Prabhakaran, P. M., & Sheeba, V. (2013). Insights into differential activity patterns of drosophilids under semi-natural conditions. The Journal of Experimental Biology, 216, 4691–4702.CrossRefGoogle Scholar
  32. Ravi, P., & Yadav, J. P. (1993). Geographical clinal variation at seven esterase-coding loci in Indian populations of Zaprionus indianus. Hereditas, 119, 161–170.Google Scholar
  33. Rego, L. N. A. A., Souza, R. S., Oliveira, M. T. V. A., & Ravazzi, M. L. (2013). Spermatogenesis of Zaprionus indianus and Zaprionus sepsoides (Diptera, Drosophilidae): Cytochemical, structural and ultrastructural characterization. Genetics and Molecular Biology, 36(1), 50–60.5.CrossRefGoogle Scholar
  34. Renkema, J. M., Miller, M., Fraser, H., Légaré, J. P. H., & Hallett, R. H. (2013). First records of Zaprionus indianus Gupta (diptera: Drosophilidae) from commercial fruit fields in Ontario and Quebec, Canada. Journal Entomology Society Ontology, 144, 125–130.Google Scholar
  35. Silva, N. A. P., Frizzas, M. R., & Oliveira, C. M. (2011a). Seasonality in insect abundance in the “Cerrado” of Goiás state, Brazil. Revista Brasileira de Entomologia, 55(1), 79–87.CrossRefGoogle Scholar
  36. Silva, R. F., Mendonça, S. C., Carvalho, L. M., Reis, A. M., Gordo, I., Trindade, S., & Dionisio, F. (2011b). Pervasive sign epistasis between conjugative plasmids and drug-resistance chromosomal mutations. PLoS Genetics, 7(7), e1002181.CrossRefGoogle Scholar
  37. Tzelepis, I., Kapsetaki, S. E., Panayidou, S., & Apidianakis, Y. (2013). Drosophila melanogaster: A first step and a stepping-stone to anti-infectives. Curr Opin Pharmacol, 13, 763–768.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Graziele Aparecida Fernandes da Cruz
    • 1
  • Débora de Jesus Pires
    • 1
  • Luiz Artur Mendes Bataus
    • 2
  • Rassan Dyego Romão Silva
    • 2
  • Mônica Santiago Barbosa
    • 2
  • Raylane Pereira Gomes
    • 2
  • Carla Afonso Silva Bitencourt Braga
    • 2
  • Lilian Carla Carneiro
    • 2
  1. 1.State University of GoiásMorrinhos CityBrazil
  2. 2.Federal University of GoiásGoânia CityBrazil

Personalised recommendations