Advertisement

Nitrogen mineralization in O horizon soils during 27 years of nitrogen enrichment at the Bear Brook Watershed in Maine, USA

  • Kaizad F. Patel
  • Ivan J. Fernandez
Article
  • 59 Downloads

Abstract

Chronic elevated nitrogen (N) deposition has altered the N status of temperate forests, with significant implications for ecosystem function. The Bear Brook Watershed in Maine (BBWM) is a whole paired watershed manipulation experiment established to study the effects of N and sulfur (S) deposition on ecosystem function. N was added bimonthly as (NH4)2SO4 to one watershed from 1989 to 2016, and research at the site has studied the evolution of ecosystem response to the treatment through time. Here, we synthesize results from 27 years of research at the site and describe the temporal trend of N availability and N mineralization at BBWM in response to chronic N deposition. Our findings suggest that there was a delayed response in soil N dynamics, since labile soil N concentrations did not show increases in the treated watershed (West Bear, WB) compared to the reference watershed (East Bear, EB) until after the first 4 years of treatment. Labile N became increasingly available in WB through time, and after 25 years of manipulations, treated soils had 10× more extractable ammonium than EB soils. The WB soils had 200× more extractable nitrate than EB soils, driven by both, high nitrate concentrations in WB and low nitrate concentrations in EB. Nitrification rates increased in WB soils and accounted for ~ 50% of net N mineralization, compared to ~ 5% in EB soils. The study provides evidence of the decadal evolution in soil function at BBWM and illustrates the importance of long-term data to capture ecosystem response to chronic disturbance.

Keywords

Nitrogen saturation Ammonium Nitrate Nitrogen mineralization Nitrification Forest soils 

Notes

Acknowledgments

We thank Jean D. MacRae, Sarah J. Nelson, Tsutomu Ohno, and Aaron Weiskittel for their input on this manuscript. We are extremely grateful to Cheryl Spencer for her assistance in the laboratory and field, and with data handling. This is a MAFES publication.

Funding information

This study was supported by grants from the National Science Foundation (DEB-1119709) and the Maine Agriculture and Forest Experiment Station (MAFES).

Supplementary material

10661_2018_6945_MOESM1_ESM.pdf (278 kb)
ESM 1 (PDF 278 kb)

References

  1. Aber, J. D., Mcdowell, W., Nadelhoffer, K. J., Magill, A. H., Berntson, G., McNulty, S. G., et al. (1998). Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience, 48(11), 921–934.CrossRefGoogle Scholar
  2. Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M.-L., Magill, A. H., Martin, M. E., et al. (2003). Is nitrogen deposition altering the nitrogen status of northeastern forests? BioScience, 53(4), 375.CrossRefGoogle Scholar
  3. Adams, M. B., Kochenderfer, J. N., & Edwards, P. J. (2007). The Fernow Watershed acidification study: Ecosystem acidification, nitrogen saturation and base cation leaching. In P. Brimblecombe, H. Hara, D. Houle, & M. Novak (Eds.), Acid rain—deposition to recovery (pp. 267–273). Dordrecht: Springer.CrossRefGoogle Scholar
  4. Ågren, G. I., & Bosatta, E. (1988). Nitrogen saturation of terrestrial ecosystems. Environmental Pollution, 54(3–4), 185–197.CrossRefGoogle Scholar
  5. Booth, M. S., Stark, J. M., & Rastetter, E. (2005). Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecological Monographs, 75(2), 139–157.CrossRefGoogle Scholar
  6. Boyce, R. L., Schaberg, P. G., Hawley, G. J., Halman, J. M., & Murakami, P. F. (2013). Effects of soil calcium and aluminum on the physiology of balsam fir and red spruce saplings in northern New England. Trees—Structure and Function, 27(6), 1657–1667.CrossRefGoogle Scholar
  7. Burns, D. A., & Murdoch, P. S. (2005). Effects of a clearcut on the net rates of nitrification and N mineralization in a northern hardwood forest, Catskill Mountains, New York, USA. Biogeochemistry, 72(1), 123–146.CrossRefGoogle Scholar
  8. Carrara, J. E., Walter, C. A., Hawkins, J. S., Peterjohn, W. T., Averill, C., & Brzostek, E. R. (2018). Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization. Global Change Biology.CrossRefGoogle Scholar
  9. Christenson, L. M., Lovett, G. M., Weathers, K. C., & Arthur, M. A. (2009). The influence of tree species, nitrogen fertilization, and soil C to N ratio on gross soil nitrogen transformations. Soil Science Society of America Journal, 73(2), 638.CrossRefGoogle Scholar
  10. Cleveland, W. S., & Devlin, S. J. (1988). Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association, 83(403), 596–610.CrossRefGoogle Scholar
  11. Contosta, A. R., Frey, S. D., & Cooper, A. B. (2011). Seasonal dynamics of soil respiration and N mineralization in chronically warmed and fertilized soils. Ecosphere, 2(3), art36.CrossRefGoogle Scholar
  12. Davidson, E. A., David, M. B., Galloway, J. N., Goodale, C. L., Haeuber, R., Harrison, J. A., et al. (2011). Excess nitrogen in the U.S. environment: trends, risks, and solutions. Issues in Ecology, 15, 1–16.Google Scholar
  13. Edwards, P. J., Williard, K. W. J., Wood, F., & Sharpe, W. E. (2006). Soil water and stream water chemical responses. In M. B. Adams, D. R. Dewalle, & J. Hom (Eds.), The Fernow Watershed acidification study (pp. 71–136). New York: Springer Berlin Heidelberg.CrossRefGoogle Scholar
  14. Elvir, J. A., Rustad, L. E., Wiersrna, G. B., Fernandez, I. J., White, A. S., & White, G. J. (2005). Eleven-year response of foliar chemistry to chronic nitrogen and sulfur additions at the Bear Brook Watershed in Maine. Canadian Journal of Forest Research, 35(6), 1402–1410.CrossRefGoogle Scholar
  15. Elvir, J. A., Wiersma, G. B., Day, M. E., Greenwood, M. S., & Fernandez, I. J. (2006). Effects of enhanced nitrogen deposition on foliar chemistry and physiological processes of forest trees at the Bear Brook Watershed in Maine. Forest Ecology and Management, 221(1–3), 207–214.CrossRefGoogle Scholar
  16. Elvir, J. A., Wiersma, G. B., Bethers, S., & Kenlan, P. (2010). Effects of chronic ammonium sulfate treatment on the forest at the Bear Brook Watershed in Maine. Environmental Monitoring and Assessment, 171(1–4), 129–147.CrossRefGoogle Scholar
  17. Emmett, B. A. (2007). Nitrogen saturation of terrestrial ecosystems: Some recent findings and their implications for our conceptual framework. Water, Air, & Soil Pollution: Focus, 7(1–3), 99–109.CrossRefGoogle Scholar
  18. Eno, C. F. (1960). Nitrate production in the field by incubating the soil in polyethylene bags. Soil Science Society of America Proceedings, 24, 277–279.CrossRefGoogle Scholar
  19. Fatemi, F. R., Fernandez, I. J., Szillery, J., Norton, S. A., & Rustad, L. E. (2012). Soil solution chemical response to two decades of experimental acidification at the bear brook watershed in Maine. Water, Air, and Soil Pollution, 223(9), 6171–6186.CrossRefGoogle Scholar
  20. Fatemi, F. R., Fernandez, I. J., Simon, K. S., & Dail, D. B. (2016). Nitrogen and phosphorus regulation of soil enzyme activities in acid forest soils. Soil Biology and Biochemistry, 98, 171–179.CrossRefGoogle Scholar
  21. Fenn, M. E., Poth, M. A., Terry, J. D., & Blubaugh, T. J. (2005). Nitrogen mineralization and nitrification in a mixed-conifer forest in southern California: controlling factors, fluxes, and nitrogen fertilization response at a high and low nitrogen deposition site. Canadian Journal of Forest Research, 35(6), 1464–1486.CrossRefGoogle Scholar
  22. Fernandez, I. J., Simmons, J. A., & Briggs, R. D. (2000). Indices of forest floor nitrogen status along a climate gradient in Maine, USA. Forest Ecology and Management, 134(1–3), 177–187.CrossRefGoogle Scholar
  23. Fernandez, I. J., Rustad, L. E., Norton, S. A., Kahl, J. S., & Cosby, B. J. (2003). Experimental acidification causes soil base-cation depletion at the Bear Brook Watershed in Maine. Soil Science Society of America Journal, 67(6), 1909–1919.CrossRefGoogle Scholar
  24. Fernandez, I. J., Adams, M. B., Sanclements, M. D., & Norton, S. A. (2010). Comparing decadal responses of whole-watershed manipulations at the Bear Brook and Fernow experiments. Environmental Monitoring and Assessment, 171(1–4), 149–161.CrossRefGoogle Scholar
  25. Ferretti, M., Calderisi, M., Marchetto, A., Waldner, P., Thimonier, A., Jonard, M., et al. (2015). Variables related to nitrogen deposition improve defoliation models for European forests. Annals of Forest Science, 72(7), 897–906.CrossRefGoogle Scholar
  26. Frey, S. D., Ollinger, S., Nadelhoffer, K. J., Bowden, R., Brzostek, E., Burton, A., et al. (2014). Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry, 121(2), 305–316.CrossRefGoogle Scholar
  27. Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., et al. (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320(May), 889–892.CrossRefGoogle Scholar
  28. Gilliam, F. S., & Adams, M. B. (2011). Effects of nitrogen on temporal and spatial patterns of nitrate in streams and soil solution of a central hardwood forest. International Scholarly Research Network ISRN Ecology.Google Scholar
  29. Gilliam, F. S., Somerville, C. C., Lyttle, N. L., & Adams, M. B. (2001). Factors influencing spatial variability in nitrogen processing in nitrogen-saturated soils. The Scientific World Journal, 1(November), 505–513.CrossRefGoogle Scholar
  30. Gilliam, F. S., Cook, A., & Lyter, S. (2010). Effects of experimental freezing on soil nitrogen dynamics in soils from a net nitrification gradient in a nitrogen-saturated hardwood forest ecosystem. Canadian Journal of Forest Research, 40(3), 436–444.CrossRefGoogle Scholar
  31. Gilliam, F. S., Galloway, J. E., & Sarmiento, J. S. (2015). Variation with slope aspect in effects of temperature on nitrogen mineralization and nitrification in mineral soil of mixed hardwood forests. Canadian Journal of Forest Research, 45(7), 958–962.CrossRefGoogle Scholar
  32. Gilliam, F. S., Walter, C. A., Adams, M. B., & Peterjohn, W. T. (2018). Nitrogen (N) dynamics in the mineral soil of a central Appalachian hardwood forest during a quarter century of whole-watershed N additions. Ecosystems, 1–16.Google Scholar
  33. Goodale, C. L., & Aber, J. D. (2001). The long-term effects of land-use history on nitrogen cycling in northern hardwood forests. Ecological Applications, 11(1), 253–267.CrossRefGoogle Scholar
  34. Groffman, P. M., Driscoll, C. T., Durán, J., Campbell, J. L., Christenson, L. M., Fahey, T. J., et al. (2018). Nitrogen oligotrophication in northern hardwood forests. Biogeochemistry.Google Scholar
  35. Gundersen, P., Emmett, B. A., Kjønaas, O. J., Koopmans, C. J., & Tietema, A. (1998). Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. Forest Ecology and Management, 101(1–3), 37–55.CrossRefGoogle Scholar
  36. Hart, S. C., Stark, J. M., Davidson, E. A., & Firestone, M. K. (1994). Nitrogen mineralization, immobilization, and nitrification. In W. R. W, A. Scott, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, & A. Wollum (Eds.), Methods of soil analysis: microbiological and biochemical properties (pp. 985–1019). Madison: Soil Science Society of America, Inc..Google Scholar
  37. Helsel, D. R., Mueller, D. K., & Slack, J. R. (2006). Computer program for the Kendall family of trend tests. U.S. Geological Survey Scientific Investigations Report 2005–5275, 4.Google Scholar
  38. Hipel, K. W., & McLeod, A. I. (1994). Nonparametric tests for trend detection. In Time series modelling of water resources and environmental systems (pp. 853–938). Amsterdam: Elsevier Science, Ltd..Google Scholar
  39. Hong, B., Swaney, D. P., Woodbury, P. B., & Weinstein, D. A. (2005). Long-term nitrate export pattern from Hubbard Brook watershed 6 driven by climatic variation. Water, Air, and Soil Pollution, 160(1–4), 293–326.CrossRefGoogle Scholar
  40. Hunt, J. F., Ohno, T., & Fernandez, I. J. (2008). Influence of foliar phosphorus and nitrogen contents on chemical properties of water extractable organic matter derived from fresh and decomposed sugar maple leaves. Soil Biology and Biochemistry, 40(7), 1931–1939.CrossRefGoogle Scholar
  41. Jefts, S., Fernandez, I. J., Rustad, L. E., & Dail, D. B. (2004). Decadal responses in soil N dynamics at the Bear Brook Watershed in Maine, USA. Forest Ecology and Management, 189(1–3), 189–205.CrossRefGoogle Scholar
  42. Kahl, J. S., Norton, S. A., Fernandez, I. J., Nadelhoffer, K. J., Driscoll, C. T., & Aber, J. D. (1993). Experimental inducement of nitrogen saturation at the watershed scale. Environmental Science and Technology, 27(3), 565–568.CrossRefGoogle Scholar
  43. Kjønaas, O. J., & Wright, R. F. (2007). Use of 15N-labelled nitrogen deposition to quantify the source of nitrogen in runoff at a coniferous-forested catchment at Gårdsjön, Sweden. Environmental Pollution, 147(3), 791–799.CrossRefGoogle Scholar
  44. Knoepp, J. D., & Swank, W. T. (2002). Using soil temperature and moisture to predict forest soil nitrogen mineralization. Biology and Fertility of Soils, 36(3), 177–182.CrossRefGoogle Scholar
  45. Knoepp, J. D., & Vose, J. M. (2007). Regulation of nitrogen mineralization and nitrification in Southern Appalachian ecosystems: separating the relative importance of biotic vs. abiotic controls. Pedobiologia, 51(2), 89–97.CrossRefGoogle Scholar
  46. Kopáček, J., Cosby, B. J., Evans, C. D., Hruška, J., Moldan, F., Oulehle, F., et al. (2013). Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: Linking nitrogen saturation to carbon limitation of soil microbial processes. Biogeochemistry, 115(1–3), 33–51.CrossRefGoogle Scholar
  47. Lawrence, G. B., Hazlett, P. W., Fernandez, I. J., Ouimet, R., Bailey, S. W., Shortle, W. C., et al. (2015). Declining acidic deposition begins reversal of forest-soil acidification in the northeastern U.S. and eastern Canada. Environmental Science and Technology, 49(22), 13103–13111.CrossRefGoogle Scholar
  48. Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann, C. M. B., et al. (2016). Increasing importance of deposition of reduced nitrogen in the United States. Proceedings of the National Academy of Sciences, 113(21), 5874–5879.CrossRefGoogle Scholar
  49. Liu, X., Duan, L., Mo, J., Du, E., Shen, J., Lu, X., et al. (2011). Nitrogen deposition and its ecological impact in China: an overview. Environmental Pollution, 159(10), 2251–2264.CrossRefGoogle Scholar
  50. Liu, Y., Wang, C., He, N., Wen, X., Gao, Y., Li, S., et al. (2017). A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Global Change Biology, 23(1), 455–464.CrossRefGoogle Scholar
  51. Lovett, G. M., & Goodale, C. L. (2011). A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest. Ecosystems, 14(4), 615–631.CrossRefGoogle Scholar
  52. Lovett, G. M., & Rueth, H. (1999). Soil nitrogen transformations in beech and maple stands along a nitrogen deposition gradient. Ecological Applications, 9(4), 1330–1344.CrossRefGoogle Scholar
  53. Lovett, G. M., Weathers, K. C., Arthur, M. A., & Schultz, J. C. (2004). Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry, 67, 289–308.CrossRefGoogle Scholar
  54. Lu, M., Yang, Y., Luo, Y., Fang, C., Zhou, X., Chen, J., et al. (2011). Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytologist, 189(4), 1040–1050.CrossRefGoogle Scholar
  55. Lucas, R. W., Klaminder, J., Futter, M. N., Bishop, K. H., Egnell, G., Laudon, H., & Högberg, P. (2011). A meta-analysis of the effects of nitrogen additions on base cations: implications for plants, soils, and streams. Forest Ecology and Management, 262(2), 95–104.CrossRefGoogle Scholar
  56. Magill, A. H., Aber, J. D., Hendricks, J. J., Bowden, R. D., Jerry, M., & Steudler, P. A. (1997). Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecological Applications, 7(2), 402–415.CrossRefGoogle Scholar
  57. Magill, A. H., Aber, J. D., Berntson, G. M., McDowell, W. H., Nadelhoffer, K. J., Melillo, J. M., & Steudler, P. (2000). Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems, 3(3), 238–253.CrossRefGoogle Scholar
  58. Magill, A. H., Aber, J. D., Currie, W. S., Nadelhoffer, K. J., Martin, M. E., McDowell, W. H., et al. (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196(1), 7–28.CrossRefGoogle Scholar
  59. Maine River Flow Advisory Commission. (2018). Maine Cooperative Snow Survey. Maine Emergency Management Agency, http://www.maine.gov/rfac/rfac_snow.shtml.
  60. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245.CrossRefGoogle Scholar
  61. McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., et al. (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6(4), 301–312.CrossRefGoogle Scholar
  62. McNulty, S. G., Boggs, J., Aber, J. D., Rustad, L. E., & Magill, A. H. (2005). Red spruce ecosystem level changes following 14 years of chronic N fertilization. Forest Ecology and Management, 219(2–3), 279–291.CrossRefGoogle Scholar
  63. Mineau, M. M., Fatemi, F. R., Fernandez, I. J., & Simon, K. S. (2014). Microbial enzyme activity at the watershed scale: response to chronic nitrogen deposition and acute phosphorus enrichment. Biogeochemistry, 117(1), 131–142.CrossRefGoogle Scholar
  64. Minocha, R., Turlapati, S. A., Long, S., McDowell, W. H., Minocha, S. C., & Millard, P. (2015). Long-term trends of changes in pine and oak foliar nitrogen metabolism in response to chronic nitrogen amendments at Harvard Forest, MA. Tree Physiology, 35(8), 894–909.CrossRefGoogle Scholar
  65. Moldan, F., & Wright, R. F. (2011). Nitrogen leaching and acidification during 19 years of NH4NO3 additions to a coniferous-forested catchment at Gårdsjön, Sweden (NITREX). Environmental Pollution, 159(2), 431–440.CrossRefGoogle Scholar
  66. Morse, J. L., Durán, J., Beall, F., Enanga, E. M., Creed, I. F., Fernandez, I. J., & Groffman, P. M. (2015). Soil denitrification fluxes from three northeastern North American forests across a range of nitrogen deposition. Oecologia, 177(1), 17–27.CrossRefGoogle Scholar
  67. Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2009). Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma, 153(1–2), 231–240.CrossRefGoogle Scholar
  68. Niu, S., Classen, A. T., Dukes, J. S., Kardol, P., Liu, L., Luo, Y., et al. (2016). Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecology Letters, 19(6), 697–709.CrossRefGoogle Scholar
  69. Norton, S. A., Kahl, J. S., & Fernandez, I. J. (1999). Altered soil-soil water interactions inferred from stream water chemistry at an artificially acidified watershed at Bear Brook Watershed, Maine USA. Environmental Monitoring and Assessment.CrossRefGoogle Scholar
  70. Ohno, T., Fernandez, I. J., Hiradate, S., & Sherman, J. F. (2007). Effects of soil acidification and forest type on water soluble soil organic matter properties. Geoderma, 140(1–2), 176–187.CrossRefGoogle Scholar
  71. Patel, K. F., Nelson, S. J., Spencer, C. J., & Fernandez, I. J. (2018a). Soil temperature record for the Bear Brook Watershed in Maine. PANGAEA.  https://doi.org/10.1594/PANGAEA.885860.
  72. Patel, K. F., Nelson, S. J., Spencer, C. J., & Fernandez, I. J. (2018b). Fifteen-year record of soil temperature at the Bear Brook Watershed in Maine. Scientific Data, 5, 180153.CrossRefGoogle Scholar
  73. Perakis, S. S., & Sinkhorn, E. R. (2011). Biogeochemistry of a temperate forest nitrogen gradient. Ecology, 92(7), 1481–1491.CrossRefGoogle Scholar
  74. Perakis, S. S., Compton, J. E., & Hedin, L. O. (2005). Nitrogen retention across a gradient of 15N additions to an unpolluted temperate forest soil in Chile. Ecology, 86(1), 96–105.CrossRefGoogle Scholar
  75. Ross, D. S., Wemple, B. C., Jamison, A. E., Fredriksen, G., Shanley, J. B., Lawrence, G. B., et al. (2009). A cross-site comparison of factors influencing soil nitrification rates in northeastern USA forested watersheds. Ecosystems, 12(1), 158–178.CrossRefGoogle Scholar
  76. Ross, D. S., Shanley, J. B., Campbell, J. L., Lawrence, G. B., Bailey, S. W., Likens, G. E., et al. (2012). Spatial patterns of soil nitrification and nitrate export from forested headwaters in the northeastern United States. Journal of Geophysical Research: Biogeosciences, 117(1), 1–14.Google Scholar
  77. SanClements, M. D., Fernandez, I. J., & Norton, S. A. (2010). Soil chemical and physical properties at the Bear Brook Watershed in Maine, USA. Environmental Monitoring and Assessment, 171(1–4), 111–128.CrossRefGoogle Scholar
  78. Schlesinger, W. H. (2009). On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences, 106(1), 203–208.CrossRefGoogle Scholar
  79. Schöpp, W., Posch, M., Mylona, S., & Johansson, M. (2003). Long-term development of acid deposition (1880-2030) in sensitive freshwater regions in Europe. Hydrology and Earth System Sciences, 7(4), 436–446.CrossRefGoogle Scholar
  80. Shibata, H. (2016). Impact of winter climate change on nitrogen biogeochemistry in forest ecosystems: a synthesis from Japanese case studies. Ecological Indicators, 65, 4–9.CrossRefGoogle Scholar
  81. Simon, K. S., Chadwick, M. A., Huryn, A. D., & Valett, H. M. (2010). Stream ecosystem response to chronic deposition of N and acid at the Bear Brook Watershed, Maine. Environmental Monitoring and Assessment, 171(1–4), 83–92.CrossRefGoogle Scholar
  82. Smithwick, E. A. H., Eissenstat, D. M., Lovett, G. M., Bowden, R. D., Rustad, L. E., & Driscoll, C. T. (2013). Root stress and nitrogen deposition: consequences and research priorities. New Phytologist, 197(3), 712–719.CrossRefGoogle Scholar
  83. Sollins, P., Glassman, C., Paul, E. A., Swanston, C. W., Lajtha, K., Heil, J. W., & Elliott, E. T. (1999). Soil carbon and nitrogen pools and fractions. In G. P. Robertson, D. C. Coleman, C. S. Bledsoe, & P. Sollins (Eds.), Standard soil methods for long-term ecological research (pp. 89–105). New York: Oxford University Press.Google Scholar
  84. Sorensen, P. O., Templer, P. H., Christenson, L., Duran, J., Fahey, T., Fisk, M. C., et al. (2016). Reduced snow cover alters root-microbe interactions and decreases nitrification rates in a northern hardwood forest. Ecology, 97(12), 3359–3367.CrossRefGoogle Scholar
  85. Stone, M. M., Weiss, M. S., Goodale, C. L., Adams, M. B., Fernandez, I. J., German, D. P., & Allison, S. D. (2012). Temperature sensitivity of soil enzyme kinetics under N-fertilization in two temperate forests. Global Change Biology, 18(3), 1173–1184.CrossRefGoogle Scholar
  86. Tatariw, C. (2016). The impact of anthropogenic disturbance on soil microbial community composition and activity: implications for ecosystem function. Ph. D. dissertation. University of Maine. 158 pp.Google Scholar
  87. Tatariw, C., MacRae, J. D., Fernandez, I. J., Gruselle, M.-C., Salvino, C. J., & Simon, K. S. (2018). Chronic nitrogen enrichment at the watershed scale does not enhance microbial phosphorus limitation. Ecosystems, 21(1), 178–189.CrossRefGoogle Scholar
  88. Templer, P. H., Mack, M. C., Chapin, F. S., Christenson, L. M., Compton, J. E., Crook, H. D., et al. (2012a). Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies. Ecology, 93(8), 1816–1829.CrossRefGoogle Scholar
  89. Templer, P. H., Pinder, R. W., & Goodale, C. L. (2012b). Effects of nitrogen deposition on greenhouse-gas fluxes for forests and grasslands of North America. Frontiers in Ecology and the Environment, 10(10), 547–553.CrossRefGoogle Scholar
  90. Treseder, K. K. (2008). Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecology Letters, 11(10), 1111–1120.CrossRefGoogle Scholar
  91. Turlapati, S. A., Minocha, R., Bhiravarasa, P. S., Tisa, L. S., Thomas, W. K., & Minocha, S. C. (2013). Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA. FEMS Microbiology Ecology, 83(2), 478–493.CrossRefGoogle Scholar
  92. Van Diepen, L. T. A., Frey, S. D., Landis, E. A., Morrison, E. W., & Pringle, A. (2017). Fungi exposed to chronic nitrogen enrichment are less able to decay leaf litter. Ecology, 98(1), 5–11.CrossRefGoogle Scholar
  93. Venterea, R. T., Groffman, P. M., Verchot, L. V., Magill, A. H., & Aber, J. D. (2004). Gross nitrogen process rates in temperate forest soils exhibiting symptoms of nitrogen saturation. Forest Ecology and Management, 196(1), 129–142.CrossRefGoogle Scholar
  94. Verchot, L. V., Holmes, Z., Mulon, L., Groffman, P. M., & Lovett, G. M. (2001). Gross vs net rates of N mineralization and nitrification as indicators of functional differences between forest types. Soil Biology and Biochemistry, 33(14), 1889–1901.CrossRefGoogle Scholar
  95. Wallenstein, M. D., McNulty, S. G., Fernandez, I. J., Boggs, J., & Schlesinger, W. H. (2006). Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecology and Management, 222(1–3), 459–468.CrossRefGoogle Scholar
  96. Wang, Z., & Fernandez, I. J. (1999). Soil type and forest vegetation influences on forest floor nitrogen dynamics at the Bear Brook Watershed in Maine (BBWM). Environmental Monitoring and Assessment, 55(1), 221–234.CrossRefGoogle Scholar
  97. Xi, D., Bai, R., Zhang, L., & Fang, Y. (2016). Contribution of anammox to nitrogen removal in two temperate forest soils. Applied and Environmental Microbiology, 82(15), 4602–4612.CrossRefGoogle Scholar
  98. Zak, D. R., Holmes, W. E., Tomlinson, M. J., Pregitzer, K. S., & Burton, A. J. (2006). Microbial cycling of C and N in northern hardwood forests receiving chronic atmospheric NO3 deposition. Ecosystems, 9(2), 242–253.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Forest ResourcesUniversity of MaineOronoUSA
  2. 2.Climate Change InstituteUniversity of MaineOronoUSA

Personalised recommendations