Advertisement

Treatment technologies for PAH-contaminated sites: a critical review

  • Saeid Gitipour
  • George A. Sorial
  • Soroush Ghasemi
  • Mahdieh Bazyari
Article
  • 248 Downloads

Abstract

To reduce environmental and human health risks of contaminated sites, having a comprehensive knowledge about the polycyclic aromatic hydrocarbon (PAH) removal processes is crucial. PAHs are contaminants which are highly recognized to pose threats to humans, animals, and plants. PAHs are hydrophobic and own two or more benzene rings, and hence are resistant to structural degradation. There are various techniques which have been developed to treat PAH-contaminated soil. Four distinct processes to remove PAHs in the contaminated soil, thought to be more effective techniques, are presented in this review: soil washing, chemical oxidation, electrokinetic, phytoremediation. In a surfactant-aided washing process, a removal rate of 90% was reported. Compost-amended phytoremediation treatment presented 58–99% removal of pyrene from the soil in 90 days. Chemical oxidation method was able to reach complete conversion for some PAHs. In electrokinetic treatment, researchers have achieved reliable results in removal of some specific PAHs. Researchers’ innovations in novel studies and advantages/disadvantages of the techniques are also investigated throughout the paper. Finally, it should be noted that an exclusive method or a combination of methods by themselves are not the key to be employed for remediation of every contaminated site but the field characteristics are also essential in selection of the most appropriate decontamination technique(s). The remedy for selection criteria is based on PAH concentrations, site characteristics, costs, shortcomings, and advantages.

Keywords

Contaminated soil Decontamination technique Electrokinetic treatment Phytoremediation Polycyclic aromatic hydrocarbons (PAHs) 

Abbreviations

EPA

Environmental Protection Agency

HOCs

Hydrophobic organic contaminations

PAHs

Polycyclic aromatic hydrocarbons

References

  1. Alcántara, M. T., Gómez, J., Pazos, M., & Sanromán, M. A. (2010). Electrokinetic remediation of PAH mixtures from kaolin. Journal of Hazardous Materials, 179(1–3), 1156–1160.  https://doi.org/10.1016/j.jhazmat.2010.03.010.CrossRefGoogle Scholar
  2. Antizar-Ladislao, B., Lopez-Real, J., & Beck, A. J. (2005). Laboratory studies of the remediation of polycyclic aromatic hydrocarbon contaminated soil by in-vessel composting. Waste Management, 25(3), 281–289.  https://doi.org/10.1016/j.wasman.2005.01.009.CrossRefGoogle Scholar
  3. Bakhtiari, A. R., Zakaria, M. P., Yaziz, M. I., Lajis, M. N. H., Bi, X., & Rahim, M. C. A. (2009). Vertical distribution and source identification of polycyclic aromatic hydrocarbons in anoxic sediment cores of Chini Lake, Malaysia: perylene as indicator of land plant-derived hydrocarbons. Applied Geochemistry, 24(9), 1777–1787.  https://doi.org/10.1016/j.apgeochem.2009.05.008.CrossRefGoogle Scholar
  4. Bansal, V., & Kim, K. H. (2015). Review of PAH contamination in food products and their health hazards. Environment International, 84, 26–38.  https://doi.org/10.1016/j.envint.2015.06.016.CrossRefGoogle Scholar
  5. Barbeni, M., Minero, C., Pelizzetti, E., Borgarello, E., & Serpone, N. (1987). Chemical degradation of chlorophenols with Fenton’s reagent (Fe2++ H2O2). Chemosphere, 16(10–12), 2225–2237.  https://doi.org/10.1016/0045-6535(87)90281-5.CrossRefGoogle Scholar
  6. Barra, R., Castillo, C., & Torres, J. P. M. (2007). Polycyclic aromatic hydrocarbons in the South American environment. In Reviews of environmental contamination and toxicology (pp. 1–22). New York: Springer.  https://doi.org/10.1007/978-0-387-69163-3_1.CrossRefGoogle Scholar
  7. Bavel, B. V. (2006). Comparison of Fenton’s reagent and ozone oxidation of polycyclic aromatic hydrocarbons in aged contaminated soils. Journal of Soils and Sediments, 6(4), 208–214.  https://doi.org/10.1065/jss2006.08.179.CrossRefGoogle Scholar
  8. Bocos, E., Fernández-Costas, C., Pazos, M., & Sanromán, M. Á. (2015). Removal of PAHs and pesticides from polluted soils by enhanced electrokinetic-Fenton treatment. Chemosphere, 125, 168–174.  https://doi.org/10.1016/j.chemosphere.2014.12.049.CrossRefGoogle Scholar
  9. Boll, E. S., Christensen, J. H., & Holm, P. E. (2008). Quantification and source identification of polycyclic aromatic hydrocarbons in sediment, soil, and water spinach from Hanoi, Vietnam. Journal of Environmental Monitoring, 10(2), 261–269.  https://doi.org/10.1039/b712809f.CrossRefGoogle Scholar
  10. Bossert, I. D., & Bartha, R. (1986). Structure-biodegradability relationships of polycyclic aromatic hydrocarbons in soil. Bulletin of Environmental Contamination and Toxicology, 37(1), 490–495.CrossRefGoogle Scholar
  11. Cheema, S. A., Khan, M. I., Shen, C., Tang, X., Farooq, M., Chen, L., … & Chen, Y. (2010). Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. Journal of Hazardous Materials, 177(1–3), 384–389.  https://doi.org/10.1016/j.jhazmat.2009.12.044.CrossRefGoogle Scholar
  12. Chen, J. L., & Murdoch, L. (1999). Effects of electroosmosis on natural soil: field test. Journal of Geotechnical and Geoenvironmental Engineering, 125(12), 1090–1098.  https://doi.org/10.1061/(ASCE)1090-0241(1999)125:12(1090.CrossRefGoogle Scholar
  13. Chen, C. T., Tafuri, A. N., Rahman, M., & Foerst, M. B. (1998). Chemical oxidation treatment of petroleum contaminated soil using Fenton’s reagent. Journal of Environmental Science & Health Part A, 33(6), 987–1008.  https://doi.org/10.1080/10934529809376772.CrossRefGoogle Scholar
  14. Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., & Liu, Y. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chemical Engineering Journal, 284, 582–598.  https://doi.org/10.1016/j.cej.2015.09.001.CrossRefGoogle Scholar
  15. Chirakkara, R. A., Reddy, K. R., & Cameselle, C. (2015). Electrokinetic amendment in phytoremediation of mixed contaminated soil. Electrochimica Acta, 181, 179–191.  https://doi.org/10.1016/j.electacta.2015.01.025.CrossRefGoogle Scholar
  16. Colacicco, A., De Gioannis, G., Muntoni, A., Pettinao, E., Polettini, A., & Pomi, R. (2010). Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs. Chemosphere, 81(1), 46–56.  https://doi.org/10.1016/j.chemosphere.2010.07.004.CrossRefGoogle Scholar
  17. Connell, D. W. (2005). Basic concepts of environmental chemistry. Boca Raton: CRC Press.Google Scholar
  18. Crimi, M., Quickel, M., & Ko, S. (2009). Enhanced permanganate in situ chemical oxidation through MnO2 particle stabilization: evaluation in 1-D transport systems. Journal of Contaminant Hydrology, 105(1–2), 69–79.  https://doi.org/10.1016/j.jconhyd.2008.11.007.CrossRefGoogle Scholar
  19. Cunningham, S. D., Shann, J. R., Crowley, D. E., & Anderson, T. A. (1997). Phytoremediation of contaminated water and soil. In E. Kruger (Ed.), Phytoremediation of soil and water contaminants (pp. 2–17). Washington, DC: ACS Symposium Series; American Chemical Society.  https://doi.org/10.1021/bk-1997-0664.ch001.CrossRefGoogle Scholar
  20. Douglas, G., S., Emsbomattingly, S., Stout, S., A., Uhler, A., D., & McCarthy, K., J. (2007). Chemical fingerprinting methods. In B.L. Murphy & R. D. Morrison (Eds.), Introduction to environmental forensics (pp. 311–454). Elsevier.  https://doi.org/10.1016/B978-0-12-369522-2.X5000-3
  21. Falahatpisheh, M. H., Donnelly, K. C., & Ramos, K. S. (2001). Antagonistic interactions among nephrotoxic polycyclic aromatic hydrocarbons. Journal of Toxicology and Environmental Health Part A, 62(7), 543–560.  https://doi.org/10.1080/152873901300007833.CrossRefGoogle Scholar
  22. Ferrarese, E., Andreottola, G., & Oprea, I. A. (2008). Remediation of PAH-contaminated sediments by chemical oxidation. Journal of Hazardous Materials, 152(1), 128–139.  https://doi.org/10.1016/j.jhazmat.2007.06.080.CrossRefGoogle Scholar
  23. Gan, S., & Ng, H. K. (2012a). Inorganic chelated modified-Fenton treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soils. Chemical Engineering Journal, 180, 1–8.  https://doi.org/10.1016/j.cej.2011.10.082.CrossRefGoogle Scholar
  24. Gan, S., & Ng, H. K. (2012b). Modified Fenton oxidation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils and the potential of bioremediation as post-treatment. Science of the Total Environment, 419, 240–249.  https://doi.org/10.1016/j.scitotenv.2011.12.053.CrossRefGoogle Scholar
  25. Gan, S., Lau, E. V., & Ng, H. K. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials, 172(2–3), 532–549.  https://doi.org/10.1016/j.jhazmat.2009.07.118.CrossRefGoogle Scholar
  26. Gao, Y., Li, Q., Ling, W., & Zhu, X. (2011). Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. Journal of Hazardous Materials, 185(2–3), 703–709.CrossRefGoogle Scholar
  27. Gitipour, S., Ghasemi, S., Shasemzade, R. (2016). Methods for treatment of PAH contaminated soils; review and comparison, 4th International Conference on Energy, Environment and Sustainable Development, Jamshoro, Pakistan.Google Scholar
  28. Gogou, A., Bouloubassi, I., & Stephanou, E. G. (2000). Marine organic geochemistry of the Eastern Mediterranean: 1. Aliphatic and polyaromatic hydrocarbons in Cretan Sea surficial sediments. Marine Chemistry, 68(4), 265–282.  https://doi.org/10.1016/S0304-4203(99)00082-1.CrossRefGoogle Scholar
  29. Goldman, R., Enewold, L., Pellizzari, E., Beach, J. B., Bowman, E. D., Krishnan, S. S., & Shields, P. G. (2001). Smoking increases carcinogenic polycyclic aromatic hydrocarbons in human lung tissue. Cancer Research, 61(17), 6367–6371 http://cancerres.aacrjournals.org/content/61/17/6367.abstract.Google Scholar
  30. Gong, Z., Wilke, B. M., Alef, K., Li, P., & Zhou, Q. (2006). Removal of polycyclic aromatic hydrocarbons from manufactured gas plant-contaminated soils using sunflower oil: laboratory column experiments. Chemosphere, 62(5), 780–787.  https://doi.org/10.1016/j.chemosphere.2005.04.078.CrossRefGoogle Scholar
  31. Haapea, P., & Tuhkanen, T. (2006). Integrated treatment of PAH contaminated soil by soil washing, ozonation and biological treatment. Journal of Hazardous Materials, 136(2), 244–250.  https://doi.org/10.1016/j.jhazmat.2005.12.033.CrossRefGoogle Scholar
  32. Hailwood, M., King, D., Leoz, E., Maynard, R., Menichini, E., Moorcroft, S., … & Wichmann-Fiebig, M. (2001). Ambient air pollution by polycyclic aromatic hydrocarbons PAH. Position Paper Annexes.Google Scholar
  33. Hamdi, H., Benzarti, S., Manusadžianas, L., Aoyama, I., & Jedidi, N. (2007). Solid-phase bioassays and soil microbial activities to evaluate PAH-spiked soil ecotoxicity after a long-term bioremediation process simulating landfarming. Chemosphere, 70(1), 135–143.  https://doi.org/10.1016/j.chemosphere.2007.06.043.CrossRefGoogle Scholar
  34. Hamdi, H., Benzarti, S., Aoyama, I., & Jedidi, N. (2012). Rehabilitation of degraded soils containing aged PAHs based on phytoremediation with alfalfa (Medicago sativa L.). International Biodeterioration & Biodegradation, 67, 40–47.  https://doi.org/10.1016/j.ibiod.2011.10.009.CrossRefGoogle Scholar
  35. Hatheway, A. W. (2002). Geoenvironmental protocol for site and waste characterization of former manufactured gas plants; worldwide remediation challenge in semi-volatile organic wastes. Engineering Geology, 64(4), 317–338.CrossRefGoogle Scholar
  36. Hawthorne, S. B., Langenfeld, J. J., Miller, D. J., & Burford, M., D. (1992). Comparison of supercritical CHCIF_2, N_2O, and CO_2 for the extraction of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Analytical Chemistry, 64, 1614–1622.CrossRefGoogle Scholar
  37. Huling, S. G., & Pivetz, B. E. (2006). In-situ chemical oxidation (No. EPA/600/R-06/072). Environmental Protection Agency Washington DC Office of Water.Google Scholar
  38. Jiang, J., Zhou, C., An, S., Yang, H., Guan, B., & Cai, Y. (2008). Sediment type, population density and their combined effect greatly charge the short-time growth of two common submerged macrophytes. Ecological Engineering, 34(2), 79–90.  https://doi.org/10.1016/j.ecoleng.2008.07.003.CrossRefGoogle Scholar
  39. Jin, D., Jiang, X., Jing, X., & Ou, Z. (2007). Effects of concentration, head group, and structure of surfactants on the degradation of phenanthrene. Journal of Hazardous Materials, 144(1–2), 215–221.  https://doi.org/10.1016/j.jhazmat.2006.10.012.CrossRefGoogle Scholar
  40. Joner, E. J., Leyval, C., & Colpaert, J. V. (2006). Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environmental Pollution, 142(1), 34–38.  https://doi.org/10.1016/j.envpol.2005.09.007.CrossRefGoogle Scholar
  41. Jonsson, S., Persson, Y., Frankki, S., Lundstedt, S., Bavel, B., Haglund, P., Tysklind, M. (2006) Comparison of Fenton's Reagent and Ozone Oxidation of Polycyclic Aromatic Hydrocarbons in Aged Contaminated Soils (7 pp). Journal of Soils and Sediments, 6 (4), 208–214.  https://doi.org/10.1065/jss2006.08.179 CrossRefGoogle Scholar
  42. Jonsson, S., Persson, Y., Frankki, S., Bavel, B., Lundstedt, S., Haglund, P., Tysklind, M. (2007) Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton's reagent: A multivariate evaluation of the importance of soil characteristics and PAH properties. Journal of Hazardous Materials, 149, (1):86–96.  https://doi.org/10.1016/j.jhazmat.2007.03.057 CrossRefGoogle Scholar
  43. Juwarkar, A. A., & Jambhulkar, H. P. (2008). Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresource Technology, 99(11), 4732–4741.  https://doi.org/10.1016/j.biortech.2007.09.060.CrossRefGoogle Scholar
  44. Kim, S. S., Kim, J. H., & Han, S. J. (2005). Application of the electrokinetic-Fenton process for the remediation of kaolinite contaminated with phenanthrene. Journal of Hazardous Materials, 118(1–3), 121–131.  https://doi.org/10.1016/j.jhazmat.2004.10.005.CrossRefGoogle Scholar
  45. Kim, D., Kumfer, B. M., Anastasio, C., Kennedy, I. M., & Young, T. M. (2009). Environmental aging of polycyclic aromatic hydrocarbons on soot and its effect on source identification. Chemosphere, 76(8), 1075–1081.  https://doi.org/10.1016/j.chemosphere.2009.04.031.CrossRefGoogle Scholar
  46. Kronholm, J., Desbands, B., Hartonen, K., & Riekkola, M. L. (2002). Environmentally friendly laboratory-scale remediation of PAH-contaminated soil by using pressurized hot water extraction coupled with pressurized hot water oxidation. Green Chemistry, 4(3), 213–219.  https://doi.org/10.1039/B200804C.CrossRefGoogle Scholar
  47. Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Ex-Situ remediation technologies for environmental pollutants: A critical perspective. In P. de Voogt (Ed.), Reviews of environmental contamination and toxicology Volume 236. Cham: Springer.  https://doi.org/10.1007/978-3-319-20013-2_2 Google Scholar
  48. Lahlou, M., Harms, H., Springael, D., & Ortega-Calvo, J. J. (2000). Influence of soil components on the transport of polycyclic aromatic hydrocarbon-degrading bacteria through saturated porous media. Environmental Science & Technology, 34(17), 3649–3656.  https://doi.org/10.1021/es000021t.CrossRefGoogle Scholar
  49. Lima, A. T., Kleingeld, P. J., Heister, K., & Loch, J. G. (2011). Removal of PAHs from contaminated clayey soil by means of electro-osmosis. Separation and Purification Technology, 79(2), 221–229.  https://doi.org/10.1016/j.seppur.2011.02.021.CrossRefGoogle Scholar
  50. Liu, K., Han, W., Pan, W. P., & Riley, J. T. (2001). Polycyclic aromatic hydrocarbon (PAH) emissions from a coal-fired pilot FBC system. Journal of Hazardous Materials, 84(2–3), 175–188.  https://doi.org/10.1016/S0304-3894(01)00196-0.CrossRefGoogle Scholar
  51. Liu, H., Meng, F., Tong, Y., & Chi, J. (2014a). Effect of plant density on phytoremediation of polycyclic aromatic hydrocarbons contaminated sediments with Vallisneria spiralis. Ecological Engineering, 73, 380–385.  https://doi.org/10.1016/j.ecoleng.2014.09.084.CrossRefGoogle Scholar
  52. Liu, R., Xiao, N., Wei, S., Zhao, L., & An, J. (2014b). Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. Science of the Total Environment, 473, 350–358.  https://doi.org/10.1016/j.scitotenv.2013.12.027.CrossRefGoogle Scholar
  53. López-Vizcaíno, R., Sáez, C., Cañizares, P., & Rodrigo, M. A. (2012). The use of a combined process of surfactant-aided soil washing and coagulation for PAH-contaminated soils treatment. Separation and Purification Technology, 88, 46–51.  https://doi.org/10.1016/j.seppur.2011.11.038.CrossRefGoogle Scholar
  54. Lyons, W. C. (1996). Standard handbook of petroleum and natural gas engineering. Houston: Gulf Publishing Company.Google Scholar
  55. Mackay, D., Shiu, W. Y., & Ma, K. C. (1997). Illustrated handbook of physical-chemical properties of environmental fate for organic chemicals. Boca Raton: CRC Press.Google Scholar
  56. Manahan, S. E. (1999). Industrial ecology: environmental chemistry and hazardous waste. Boca Raton: CRC Press http://113.160.249.209:8080/xmlui/handle/123456789/7708.Google Scholar
  57. Mao, X., Jiang, R., Xiao, W., & Yu, J. (2015). Use of surfactants for the remediation of contaminated soils: a review. Journal of Hazardous Materials, 285, 419–435.  https://doi.org/10.1016/j.jhazmat.2014.12.009.CrossRefGoogle Scholar
  58. Martin, L. R., Easton, M. P., Foster, J. W., & Hill, M. W. (1989). Oxidation of hydroxymethanesulfonic acid by Fenton’s reagent. Atmospheric Environment (1967), 23(3), 563–568.  https://doi.org/10.1016/0004-6981(89)90005-X.CrossRefGoogle Scholar
  59. Masclet, P., Bresson, M. A., & Mouvier, G. (1987). Polycyclic aromatic hydrocarbons emitted by power stations, and influence of combustion conditions. Fuel, 66(4), 556–562.  https://doi.org/10.1016/0016-2361(87)90163-3.CrossRefGoogle Scholar
  60. Mitchell J., K. (1993). Fundamentals of soil behavior. Wiley.Google Scholar
  61. O’Mahony, M. M., Dobson, A. D., Barnes, J. D., & Singleton, I. (2006). The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere, 63(2), 307–314.  https://doi.org/10.1016/j.chemosphere.2005.07.018.CrossRefGoogle Scholar
  62. Osman, K. T. (2013). Soils, Principles, Properties and Management. Netherlands: Springer.  https://doi.org/10.1007/978-94-007-5663-2 CrossRefGoogle Scholar
  63. Page, D. S., Boehm, P. D., Douglas, G. S., Bence, A. E., Burns, W. A., & Mankiewicz, P. J. (1996). The natural petroleum hydrocarbon background in subtidal sediments of Prince William Sound, Alaska, USA. Environmental Toxicology and Chemistry, 15(8), 1266–1281.  https://doi.org/10.1002/etc.5620150804.CrossRefGoogle Scholar
  64. Pham, T. D., Shrestha, R. A., Virkutyte, J., & Sillanpää, M. (2009). Combined ultrasonication and electrokinetic remediation for persistent organic removal from contaminated kaolin. Electrochimica Acta, 54(5), 1403–1407.  https://doi.org/10.1016/j.electacta.2008.09.015.CrossRefGoogle Scholar
  65. Phillips, D. H. (1983). Fifty years of benzo (a) pyrene. Nature, 303(5917), 468.  https://doi.org/10.1038/303468a0.CrossRefGoogle Scholar
  66. Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.  https://doi.org/10.1016/j.jhazmat.2010.09.076.CrossRefGoogle Scholar
  67. Ravindra, K., Mittal, A. K., & Grieken, R. (2001). Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: a review. Reviews on Environmental Health, 16(3), 169–190.  https://doi.org/10.1515/reveh.2001.16.3.169
  68. Rentz, J. A., Alvarez, P. J., & Schnoor, J. L. (2005). Benzo [a] pyrene co-metabolism in the presence of plant root extracts and exudates: implications for phytoremediation. Environmental Pollution, 136(3), 477–484.  https://doi.org/10.1016/j.envpol.2004.12.034.CrossRefGoogle Scholar
  69. Rivas, F. J. (2006). Polycyclic aromatic hydrocarbons sorbed on soils: a short review of chemical oxidation based treatments. Journal of Hazardous Materials, 138(2), 234–251.  https://doi.org/10.1016/j.jhazmat.2006.07.048.CrossRefGoogle Scholar
  70. Rivas, J., Gimeno, O., Ruth, G., & Beltrán, F. J. (2009). Ozone treatment of PAH contaminated soils: operating variables effect. Journal of Hazardous Materials, 169(1–3), 509–515.  https://doi.org/10.1016/j.jhazmat.2009.03.136.CrossRefGoogle Scholar
  71. Rosas, J. M., Santos, A., & Romero, A. (2013). Soil-washing effluent treatment by selective adsorption of toxic organic contaminants on activated carbon. Water, Air, & Soil Pollution, 224(5), 1506.  https://doi.org/10.1007/s11270-013-1506-4.CrossRefGoogle Scholar
  72. Saber, D., Mauro, D., & Sirivedhin, T. (2006). Environmental forensics investigation in sediments near a former manufactured gas plant site. Environmental Forensics, 7(1), 65–75.  https://doi.org/10.1080/15275920500506881.CrossRefGoogle Scholar
  73. Saichek, R. E., & Reddy, K. R. (2004). Evaluation of surfactants/cosolvents for desorption/solubilization of phenanthrene in clayey soils. International Journal of Environmental Studies, 61(5), 587–604.  https://doi.org/10.1080/0020723042000212636.CrossRefGoogle Scholar
  74. Samanta, S. K., Singh, O. V., & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. TRENDS in Biotechnology, 20(6), 243–248.  https://doi.org/10.1016/S0167-7799(02)01943-1.CrossRefGoogle Scholar
  75. Sirés, I., Brillas, E., Oturan, M. A., Rodrigo, M. A., & Panizza, M. (2014). Electrochemical advanced oxidation processes: today and tomorrow. a review. Environmental Science and Pollution Research, 21(14), 8336–8367.  https://doi.org/10.1007/s11356-014-2783-1.CrossRefGoogle Scholar
  76. Song, W., Li, J., Zhang, W., Hu, X., & Wang, L. (2012). An experimental study on the remediation of phenanthrene in soil using ultrasound and soil washing. Environmental Earth Sciences, 66(5), 1487–1496.  https://doi.org/10.1007/s12665-011-1388-y.CrossRefGoogle Scholar
  77. Šrám, R. J., Binková, B., Rössner, P., Rubeš, J., Topinka, J., & Dejmek, J. (1999). Adverse reproductive outcomes from exposure to environmental mutagens. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 428(1), 203–215.  https://doi.org/10.1016/S1383-5742(99)00048-4.CrossRefGoogle Scholar
  78. Stogiannidis, E., Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities. In D. Whitacre (Ed.), Reviews of environmental contamination and toxicology (Continuation of Residue Reviews), vol 234. Cham: Springer.  https://doi.org/10.1007/978-3-319-10638-0_2 Google Scholar
  79. Sun, Y., Zhou, Q., & Diao, C. (2008). Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresource Technology, 99(5), 1103–1110.  https://doi.org/10.1016/j.biortech.2007.02.035.CrossRefGoogle Scholar
  80. Sun, Y., Zhou, Q., Xu, Y., Wang, L., & Liang, X. (2011). Phytoremediation for co-contaminated soils of benzo [a] pyrene (B [a] P) and heavy metals using ornamental plant Tagetes patula. Journal of Hazardous Materials, 186(2–3), 2075–2082.  https://doi.org/10.1016/j.jhazmat.2010.12.116.CrossRefGoogle Scholar
  81. Teng, Y., Shen, Y., Luo, Y., Sun, X., Sun, M., Fu, D., et al. (2011). Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. Journal of Hazardous Materials, 186(2–3), 1271–1276.  https://doi.org/10.1016/j.jhazmat.2010.11.126.CrossRefGoogle Scholar
  82. Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.  https://doi.org/10.1016/j.envpol.2011.10.025.CrossRefGoogle Scholar
  83. Trellu, C., Ganzenko, O., Papirio, S., Pechaud, Y., Oturan, N., Huguenot, D., … & Oturan, M. A. (2016). Combination of anodic oxidation and biological treatment for the removal of phenanthrene and Tween 80 from soil washing solution. Chemical Engineering Journal, 306, 588–596. https://doi.org/10.1016/j.cej.2016.07.108.CrossRefGoogle Scholar
  84. U.S. EPA. (2012). A citizen’s guide to phytoremediation. Engineering, 1–6.Google Scholar
  85. U.S. EPA. 1984a. (2007). Method 610: polynuclear aromatic hydrocarbons. U.S.EPA. “Treatment Technologies for Site Cleanup: Annual Status Report.” Washington.Google Scholar
  86. U.S. National Library of Medicine. (2015). https://classic.nlm.nih.gov/toxmap/combo/searchChemical.do. 2015.
  87. Veignie, E., Rafin, C., Landy, D., Fourmentin, S., & Surpateanu, G. (2009). Fenton degradation assisted by cyclodextrins of a high molecular weight polycyclic aromatic hydrocarbon benzo [a] pyrene. Journal of Hazardous Materials, 168(2–3), 1296–1301.  https://doi.org/10.1016/j.jhazmat.2009.03.012.CrossRefGoogle Scholar
  88. Von Lau, E., Gan, S., Ng, H. K., & Poh, P. E. (2014). Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies. Environmental pollution, 184, 640–649.  https://doi.org/10.1016/j.envpol.2013.09.010.CrossRefGoogle Scholar
  89. Wang, Z., Fingas, M., Lambert, P., Zeng, G., Yang, C., & Hollebone, B. (2004). Characterization and identification of the Detroit River mystery oil spill (2002). Journal of Chromatography A, 1038(1–2), 201–214.  https://doi.org/10.1016/j.chroma.2004.03.004.CrossRefGoogle Scholar
  90. Wang, M. C., Chen, Y. T., Chen, S. H., Chien, S. C., & Sunkara, S. V. (2012). Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere, 87(3), 217–225.  https://doi.org/10.1016/j.chemosphere.2011.12.063.CrossRefGoogle Scholar
  91. White, P. A. (2002). The genotoxicity of priority polycyclic aromatic hydrocarbons in complex mixtures. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 515(1), 85–98.  https://doi.org/10.1016/S1383-5718(02)00017-7.CrossRefGoogle Scholar
  92. Wickramasinghe, A. P., Karunaratne, D. G. G. P., & Sivakanesan, R. (2011). PM10-bound polycyclic aromatic hydrocarbons: Concentrations, source characterization and estimating their risk in urban, suburban and rural areas in Kandy, Sri Lanka. Atmospheric Environment, 45(16), 2642–2650.  https://doi.org/10.1016/j.atmosenv.2011.02.067.CrossRefGoogle Scholar
  93. Wild, S. R., & Jones, K. C. (1995). Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environmental Pollution, 88(1), 91–108.  https://doi.org/10.1016/0269-7491(95)91052-M.CrossRefGoogle Scholar
  94. Williamson, D. G., Loehr, R. C., & Kimura, Y. (1998). Release of chemicals from contaminated soils. Journal of Soil Contamination, 7(5), 543–558.  https://doi.org/10.1080/10588339891334492.CrossRefGoogle Scholar
  95. Xie, Y., An, S., Wu, B., & Wang, W. (2006). Density-dependent root morphology and root distribution in the submerged plant Vallisneria natans. Environmental and Experimental Botany, 57(1–2), 195–200.  https://doi.org/10.1016/j.envexpbot.2005.06.001.CrossRefGoogle Scholar
  96. Zakaria, M. P., Takada, H., Tsutsumi, S., Ohno, K., Yamada, J., Kouno, E., & Kumata, H. (2002). Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environmental Science & Technology, 36(9), 1907–1918.  https://doi.org/10.1021/es011278.CrossRefGoogle Scholar
  97. Zhang, W. (2015). Batch washing of saturated hydrocarbons and polycyclic aromatic hydrocarbons from crude oil contaminated soils using bio-surfactant. Journal of Central South University, 22(3), 895–903.  https://doi.org/10.1007/s11771-015-2599-2.CrossRefGoogle Scholar
  98. Zhang, Z., Rengel, Z., Chang, H., Meney, K., Pantelic, L., & Tomanovic, R. (2012). Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs). Geoderma, 175, 1–8.  https://doi.org/10.1016/j.geoderma.2012.01.020.CrossRefGoogle Scholar
  99. Zhou, W., & Zhu, L. (2005). Solubilization of polycyclic aromatic hydrocarbons by anionic–nonionic mixed surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 255(1–3), 145–152.  https://doi.org/10.1016/j.colsurfa.2004.12.039.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Saeid Gitipour
    • 1
  • George A. Sorial
    • 2
  • Soroush Ghasemi
    • 1
  • Mahdieh Bazyari
    • 3
  1. 1.Department of Environmental Engineering, Faculty of EnvironmentUniversity of TehranTehranIran
  2. 2.Department of Chemical and Environmental EngineeringUniversity of CincinnatiCincinnatiUSA
  3. 3.HSE Group, Graduate Faculty of EnvironmentUniversity of TehranTehranIran

Personalised recommendations