Advertisement

Environmental and hydroclimatic factors influencing Vibrio populations in the estuarine zone of the Bengal delta

  • Sucharit Basu Neogi
  • Rubén Lara
  • Munirul Alam
  • Jens Harder
  • Shinji Yamasaki
  • Rita R. ColwellEmail author
Article

Abstract

The objective of this study was to determine environmental parameters driving Vibrio populations in the estuarine zone of the Bengal delta. Spatio-temporal data were collected at river estuary, mangrove, beach, pond, and canal sites. Effects of salinity, tidal amplitude, and a cyclone and tsunami were included in the study. Vibrio population shifts were found to be correlated with tide-driven salinity and suspended particulate matter (SPM). Increased abundance of Vibrio spp. in surface water was observed after a cyclone, attributed to re-suspension of benthic particulate organic carbon (POC), and increased availability of chitin and dissolved organic carbon (DOC). Approximately a two log10 increase in the (p < 0.05) number of Vibrio spp. was observed in < 20 μm particulates, compared with microphytoplankton (20–60 μm) and zooplankton > 60 μm fractions. Benthic and suspended sediment comprised a major reservoir of Vibrio spp. Results of microcosm experiments showed enhanced growth of vibrios was related to concentration of organic matter in SPM. It is concluded that SPM, POC, chitin, and salinity significantly influence abundance and distribution of vibrios in the Bengal delta estuarine zone.

Keywords

Vibrio Salinity Cyclone Tide Chitin Sediment dynamics 

Notes

Acknowledgements

We appreciate the technical support of the environmental surveillance team of icddr,b. We also acknowledge the kind assistance of Professor Anwar Huq, University of Maryland, for reviewing the manuscript and providing advice. Thoughtful suggestions received from Prodyot Kumar Basu Neogi, ex-scientist of icddr,b, are gratefully remembered. icddr,b is thankful to the Governments of Bangladesh, Canada, Sweden, and the UK for providing core/unrestricted support.

Funding information

This research was supported by the ZMT, Bremen (Grant No. LA 868/5-1 from the Deutsche Forschungsgemeinschaft, Federal Ministry of Economic Corporation and Development, Germany), Osaka Prefecture University (Monbukagakusho: MEXT Scholarship Program), the Johns Hopkins University and the University of Maryland (National Institutes of Health Grant No. 2RO1A1039129-11A2).

Supplementary material

10661_2018_6925_MOESM1_ESM.docx (954 kb)
ESM 1 (DOCX 954 kb)

References

  1. Akanda, A. S., Jutla, A. S., Gute, D. M., Sack, R. B., Alam, M., Huq, A., Colwell, R. R., & Islam, S. (2013). Population vulnerability to biannual cholera outbreaks and associated macro-scale drivers in the Bengal Delta. American Journal of Tropical Medicine and Hygiene, 89, 950–959.CrossRefGoogle Scholar
  2. Akther, F., Neogi, S. B., Chowdhury, W. B., Sadique, A., Islam, A., Akhter, M. Z., et al. (2016). Major tdh(+) Vibrio parahaemolyticus serotype changes temporally in the bay of Bengal estuary of Bangladesh. Infection Genetics and Evolution, 41, 153–159.CrossRefGoogle Scholar
  3. Alam, M., Sultana, M., Nair, G. B., Sack, R. B., Sack, D. A., Siddique, A. K., Ali, A., Huq, A., & Colwell, R. R. (2006). Toxigenic Vibrio cholerae in the aquatic environment of Mathbaria, Bangladesh. Applied and Environmental Microbiology, 72, 2849–2855.CrossRefGoogle Scholar
  4. Alam, M., Chowdhury, W. B., Bhuiyan, N. A., Islam, A., Hasan, N. A., Nair, G. B., et al. (2009). Serogroup, virulence, and genetic traits of Vibrio parahaemolyticus in the estuarine ecosystem of Bangladesh. Applied and Environmental Microbiology, 75, 6268–6274.CrossRefGoogle Scholar
  5. Alderkamp, A. C., van Rijssel, M., & Bolhuis, H. (2007). Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan laminarin. FEMS Microbiology Ecology, 59, 108–117.CrossRefGoogle Scholar
  6. Batabyal, P., Einsporn, M. H., Mookerjee, S., Palit, A., Neogi, S. B., Nair, G. B., & Lara, R. J. (2014). Influence of hydrologic and anthropogenic factors on the abundance variability of enteropathogens in the Ganges estuary, a cholera endemic region. Science of the Total Environment, 472, 154–161.CrossRefGoogle Scholar
  7. Böer, S. I., Heinemeyer, E. A., Luden, K., Erler, R., Gerdts, G., Janssen, F., & Brennholt, N. (2013). Temporal and spatial distribution patterns of potentially pathogenic Vibrio spp. at recreational beaches of the German north sea. Microbial Ecology, 65, 1052–1067.CrossRefGoogle Scholar
  8. Bonett, D. G., & Wright, T. A. (2000). Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika, 65, 23–28.CrossRefGoogle Scholar
  9. Colwell, R. R., Seidler, R. J., Kaper, J., Joseph, S. W., Garges, S., Lockman, H., et al. (1981). Occurrence of Vibrio cholerae serotype O1 in Maryland and Louisiana estuaries. Applied and Environmental Microbiology, 41, 555–558.Google Scholar
  10. Constantin de Magny, G., Murtugudde, R., Sapiano, M. R., Nizam, A., Brown, C. W., Busalacchi, A. J., et al. (2008). Environmental signatures associated with cholera epidemics. Proceedings of the National Academy of Sciences USA, 105, 17676–17681.CrossRefGoogle Scholar
  11. Constantin de Magny, G., Mozumder, P. K., Grim, C. J., Hasan, N. A., Naser, M. N., Alam, M., et al. (2011). Role of zooplankton diversity in Vibrio cholerae population dynamics and in the incidence of cholera in the Bangladesh Sundarbans. Applied and Environmental Microbiology, 77, 6125–6132.CrossRefGoogle Scholar
  12. Cruz, R. V., Harasawa, H., Lal, M., Wu, S., Anokhin, Y., Punsalmaa, B., et al. (2007). Climate change 2007: impacts, adaptation and vulnerability, chapter 10: Asia (working group II). In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Fourth assessment report of the intergovernmental panel on climate change (pp. 469–506). Cambridge: Cambridge University Press.Google Scholar
  13. Darby, S. E., Dunn, F. E., Nicholls, R. J., Rahman, M., & Riddya, L. (2015). A first look at the influence of anthropogenic climate change on the future delivery of fluvial sediment to the Ganges–Brahmaputra–Meghna delta. Environmental Science: Processes & Impacts, 17, 1587–1600.Google Scholar
  14. Eiler, A., Gonzalez-Rey, C., Allen, S., & Bertilsson, S. (2007). Growth response of Vibrio cholerae and other Vibrio spp. to cyanobacterial dissolved organic matter and temperature in brackish water. FEMS Microbiology Ecology, 60, 411–418.CrossRefGoogle Scholar
  15. Eilers, H., Pernthaler, J., Glöckner, F. O., & Amann, R. (2000). Culturability and in situ abundance of pelagic bacteria from the North Sea. Applied and Environmental Microbiology, 66, 3044–3051.CrossRefGoogle Scholar
  16. Glöckner, F. O., Fuchs, B. M., & Amann, R. (1999). Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Environmental Microbiology, 65, 3721–3726.Google Scholar
  17. Gregoracci, G. B., Nascimento, J. R., Cabral, A. S., Paranhos, R., Valentin, J. L., Thompson, C. C., & Thompson, F. L. (2012). Structuring of bacterioplankton diversity in a large tropical bay. PLoS One, 7, e31408.CrossRefGoogle Scholar
  18. Haldar, S., Neogi, S. B., Kogure, K., Chatterjee, S., Chowdhury, N., Hinenoya, A., et al. (2010). Development of a haemolysin gene-based multiplex PCR for simultaneous detection of Vibrio campbellii, Vibrio harveyi and Vibrio parahaemolyticus. Letters in Applied Microbiology, 50, 146–152.CrossRefGoogle Scholar
  19. Huq, A., Sack, R. B., Nizam, A., Longini, I. M., Nair, G. B., Ali, A., et al. (2005). Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Applied and Environmental Microbiology, 71, 4645–4654.CrossRefGoogle Scholar
  20. Johnson, C. N., Bowers, J. C., Griffitt, K. J., Molina, V., Clostio, R. W., Pei, S., et al. (2012). Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Applied and Environmental Microbiology, 78, 7249–7257.CrossRefGoogle Scholar
  21. Julie, D., Solen, L., Antoine, V., Jaufrey, C., Annick, D., & Dominique, H. H. (2010). Ecology of pathogenic and non-pathogenic Vibrio parahaemolyticus on the French Atlantic coast. Effects of temperature, salinity, turbidity and chlorophyll a. Environmental Microbiology, 12, 929–937.CrossRefGoogle Scholar
  22. Kattner, G., & Becker, H. (1991). Nutrients and organic nitrogenous compounds in the marginal ice zone of the Fram Strait. Journal of Marine Systems, 2, 385–394.CrossRefGoogle Scholar
  23. Keyhani, N. O., & Roseman, S. (1999). Physiological aspects of chitin catabolism in marine bacteria. Biochimica et Biophysica Acta, 1473, 108–122.CrossRefGoogle Scholar
  24. Kogure, K., Simudu, U., & Taga, N. (1979). A tentative direct microscopic method for counting living marine bacteria. Canadian Journal of Microbiology, 25, 415–420.CrossRefGoogle Scholar
  25. Lobitz, B., Beck, L., Huq, A., Wood, B., Fuchs, G., Faruque, A. S., & Colwell, R. (2000). Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proceedings of the National Academy of Sciences USA, 97, 1438–1443.CrossRefGoogle Scholar
  26. Louis, V. R., Russek-Cohen, E., Choopun, N., Rivera, I. N., Gangle, B., Jiang, S. C., et al. (2003). Predictability of Vibrio cholerae in Chesapeake Bay. Applied and Environmental Microbiology, 69, 2773–2785.CrossRefGoogle Scholar
  27. Mahmud, Z. H., Neogi, S. B., Kassu, A., Mai Huong, B. T., Jahid, I. K., Islam, M. S., & Ota, F. (2008). Occurrence, seasonality and genetic diversity of Vibrio vulnificus in coastal seaweeds and water along the Kii Channel, Japan. FEMS Microbiology Ecology, 64, 209–218.CrossRefGoogle Scholar
  28. Miller, C. J., Drasar, B. S., & Feachem, R. G. (1984). Response of toxigenic Vibrio cholerae O1 to physico-chemical stresses in aquatic environments. Journal of Hygiene (London), 93, 475–495.CrossRefGoogle Scholar
  29. Montgomery, M. T., Welschmeyer, N. A., & Kirchman, D. L. (1990). A simple assay for chitin: application to sediment trapsamples from the subarctic Pacific. Marine Ecology Progress Series, 64, 301–308.CrossRefGoogle Scholar
  30. Mueller, R. S., McDougald, D., Cusumano, D., Sodhi, N., Kjelleberg, S., Azam, F., & Bartlett, D. H. (2007). Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization. Journal of Bacteriology, 189, 5348–5360.CrossRefGoogle Scholar
  31. Nair, G. B., Ramamurthy, T., Bhattacharya, S. K., Dutta, B., Takeda, Y., & Sack, D. A. (2007). Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clinical Microbiology Review, 20, 39–48.CrossRefGoogle Scholar
  32. Neogi, S. B., Chowdhury, N., Asakura, M., Hinenoya, A., Haldar, S., Saidi, S. M., Kogure, K., et al. (2010). A highly sensitive and specific multiplex PCR assay for simultaneous detection of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus. Letters in Applied Microbiology, 51, 293–300.CrossRefGoogle Scholar
  33. Neogi, S. B., Koch, B. P., Schmitt-Kopplin, P., Pohl, C., Kattner, G., Yamasaki, S., & Lara, R. J. (2011). Biogeochemical controls on the bacterial populations in the eastern Atlantic Ocean. Biogeosciences, 8, 3747–3759.CrossRefGoogle Scholar
  34. Neogi, S. B., Yamasaki, S., Alam, M., & Lara, R. J. (2014). The role of wetland microinvertebrates in spreading human diseases. Wetlands Ecology and Management, 22, 461–491.CrossRefGoogle Scholar
  35. Oliver, J. D., Wear, J. E., Thomas, M. B., Warner, M., & Linder, K. (1986). Production of extracellular enzymes and cytotoxicity by Vibrio vulnificus. Diagnostic Microbiology and Infectious Disease, 5, 99–111.CrossRefGoogle Scholar
  36. Pernthaler, A., Pernthaler, J., & Amann, R. (2002). Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Applied and Environmental Microbiology, 68, 3094–3101.CrossRefGoogle Scholar
  37. Rizvi, S., Huq, M. I., & Benenson, S. (1965). Isolation of hemagglutinative non-El Tor cholera vibrios. Journal of Bacteriology, 89, 910–912.Google Scholar
  38. Roszak, D. B., & Colwell, R. R. (1987). Survival strategies of bacteria in the natural environment. Microbiological Reviews, 51, 365–379.Google Scholar
  39. Skoog, A., Thomas, D., Lara, R., & Richter, K. (1997). Methodological investigations on DOC determinations by HTCO method. Marine Chemistry, 56, 39–44.CrossRefGoogle Scholar
  40. Tamplin, M. L., Gauzens, A. L., Huq, A., Sack, D. A., & Colwell, R. R. (1990). Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Applied and Environmental Microbiology, 56, 1977–1980.Google Scholar
  41. Verado, D. J., Froelich, P. N., & McIntyre, A. (1990). Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer. Deep Sea Research, 37, 157–165.CrossRefGoogle Scholar
  42. Vezzulli, L., Pezzati, E., Moreno, M., Fabiano, M., Pane, L., Pruzzo, C., & Vibrio Sea Consortium. (2009). Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy). Microbial Ecology, 58, 808–818.CrossRefGoogle Scholar
  43. Vezzulli, L., Grande, C., Reid, P. C., Hélaouët, P., Edwards, M., Höfle, M. G., Brettar, I., Colwell, R. R., & Pruzzo, C. (2016). Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proceedings of the National Academy of Sciences USA, 113, E5062–E5071.CrossRefGoogle Scholar
  44. Williams, L. A., & Larock, P. A. (1985). Temporal occurrence of Vibrio species and Aeromonas hydrophila in estuarine sediments. Applied and Environmental Microbiology, 50, 1490–1495.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Graduate School of Life and Environmental SciencesOsaka Prefecture UniversityIzumisanoJapan
  2. 2.International Centre for Diarrhoeal Disease ResearchDhakaBangladesh
  3. 3.Leibniz Center for Tropical Marine EcologyBremenGermany
  4. 4.Argentine Institute of OceanographyCONICET-UNSBahía BlancaArgentina
  5. 5.Max Planck Institute for Marine MicrobiologyBremenGermany
  6. 6.Maryland Pathogen Research InstituteUniversity of Maryland, College ParkCollege ParkUSA
  7. 7.Center for Bioinformatics and Computational BiologyUniversity of Maryland Institute for Advanced Computer Studies, University of MarylandCollege ParkUSA
  8. 8.Johns Hopkins University Bloomberg School of Public Health|BaltimoreUSA
  9. 9.CosmosID, Inc.RockvilleUSA

Personalised recommendations