Advertisement

Metal loads and biomarker suite responses in a tropical carnivorous fish indicative of anthropogenic impacts in a Southeastern Brazilian lagoon

  • R. S. C. Coimbra
  • M. S. Mascarenhas
  • V. B. Saraiva
  • C. R. Santos
  • R. M. Lopes
  • R. A. Hauser-Davis
  • V. P. S. Oliveira
  • M. M. Molisani
  • M. G. Almeida
  • C. E. Rezende
  • C. E. V. Carvalho
  • M. M. Oliveira
Article
  • 95 Downloads

Abstract

Tropical coastal lagoons are highly productive environments exhibiting high biodiversity. However, the use of these ecosystems by local communities is of concern, since this generally leads to environmental degradation. The Imboassica coastal lagoon, located in Macaé city, in Northern Rio de Janeiro, is an important ecosystem in the state, however, already displaying signs of anthropogenic impacts. Carnivorous fish Hoplias malabaricus specimens were sampled from this impacted site, as well as from a reference area. Fish from Imboassica Lagoon presented lower condition factor, lower cholinesterase activity, and higher percentage of erythrocyte micronuclei when compared to fish from the reference site. Metals in fish from Imboassica Lagoon were always higher than Encantada Lagoon, with some seasonal differences, where some metals were higher in the rainy season compared to the dry season in muscle tissue, with the exception of Cu, Fe, Sr, and Zn; and in the liver, except for Ba, Cd, Cr, Ni, and Sr. Cr and Mn in the edible muscle portion of the fish were higher than the limits established by Brazilian and International legislations as permissible for human consumption, thus leading to concerns regarding public health risks for the local population that use fish as their main protein source.

Keywords

Acetylcholinesterase Brazil Fish Lagoon Metals Micronucleus Public health risk 

References

  1. Alkan, N., Alkan, A., Gedik, K., & Fisher, A. (2016). Assessment of metal concentrations in commercially important fish species in Black Sea. Toxicology and Industrial Health, 32, 447–456.CrossRefGoogle Scholar
  2. Al-Sabti, K., & Metcalfe, C. D. (1995). Fish micronuclei for assessing genotoxicity in water. Mutation Research/Genetic Toxicology, 343, 121–135.CrossRefGoogle Scholar
  3. Amiard, J. C., et al. (2006). Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquatic Toxicology, 76, 160–202.CrossRefGoogle Scholar
  4. Bastos, W. R., et al. (1998). Establishment and analytical quality control of laboratories for Hg determination in biological and geological samples in the Amazon, Brazil. Ciência e Cultura, 50, 255–260.Google Scholar
  5. Bowles, D. (1999). An overview of the concentrations and effects of metals in cetacean species. Journal of Cetacean Research and Management, 1, 125–148.Google Scholar
  6. Calabrese, E. J. (2008). Hormesis: why it is important to toxicology and toxicologists. Environmental Toxicology and Chemistry, 27, 1451–1474.CrossRefGoogle Scholar
  7. Calmano, W., et al. (1994). Mobilization and scavenging of heavy metals following resuspension of anoxic sediments from the Elbe river. In C. N. Alpers & D. W. Blowes (Eds.), Environmental geochemistry of Sulfie oxidation (pp. 298–321). Washington, DC: American Chemical Society.Google Scholar
  8. Camara, E. M., Caramaschi, É. P., & Petry, A. C. (2011). Fator de condição: bases conceituais, aplicações e perspectivas de uso em pesquisas ecológicas com peixes. Oecologia Australis, 15, 249–274.CrossRefGoogle Scholar
  9. Campbell, P. G. C., Kraemer, L. D., Giguère, A., Hare, L., & Hontela, A. (2008). Subcellular distribution of cadmium and nickel in chronically exposed wild fish: inferences regarding metal detoxification strategies and implications for setting water quality guidelines for dissolved metals. Human and Ecological Risk Assessment, 14, 290–316.CrossRefGoogle Scholar
  10. CONAMA, (2005). RESOLUÇÃO No 357, DE 17 DE MARÇO DE 2005. Publicada no DOU n° 053, de 18/03/2005, págs. 58-63.Google Scholar
  11. Eastwood, S., & Couture, P. (2002). Seasonal variations in condition and liver metal concentrations of yellow perch (Perca flavescens) from a metal-contaminated environment. Aquatic Toxicology, 58, 43–56.CrossRefGoogle Scholar
  12. Ellman, G. L., Courtney, K. D., Andres Jr., V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.CrossRefGoogle Scholar
  13. El-Moselhy, K. M., et al. (2014). Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egyptian Journal of Basic and Applied Sciences, 1, 97–105.CrossRefGoogle Scholar
  14. Filipak Neto, F., Zanata, S. M., Silva de Assis, H. C., Bussolaro, D., Ferraro, M. V. M., Randi, M. A. F., Alves Costa, J. R. M., Cestari, M. M., Roche, H., & Oliveira Ribeiro, C. A. (2007). Use of hepatocytes from Hoplias malabaricus to characterize the toxicity of a complex mixture of lipophilic halogenated compounds. Toxicology In Vitro, 21, 706–715.CrossRefGoogle Scholar
  15. Frasco, M. F., Colletier, J. P., Weik, M., Carvalho, F., Guilhermino, L., Stojan, J., & Fournier, D. (2007). Mechanisms of cholinesterase inhibition by inorganic mercury. FEBS Journal, 274, 1849–1861.CrossRefGoogle Scholar
  16. Fulton, T. W., (1902). The rate of growth of fishes. 20th annual report of the fishery Board of Scotland. 3, 326-446.Google Scholar
  17. Fulton, M. H., & Key, P. B. (2001). Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environmental Toxicology and Chemistry, 20, 37–45.CrossRefGoogle Scholar
  18. Funk, A. E., et al. (1987). Displacement of zinc and copper from copper-induced metallothionein by cadmium and by mercury: in vivo and ex vivo studies. Comparative Biochemistry and Physiology: Part C, 86, 1–6.CrossRefGoogle Scholar
  19. Gorur, F. K., et al. (2012). Radioactivity and heavy metal concentrations of some commercial fish species consumed in the Black Sea region of Turkey. Chemosphere, 87, 356–361.CrossRefGoogle Scholar
  20. Hauser-Davis, R. A., Lavandier, R. C., Bastos, F. F., Oliveira, T. F., Ribeiro, C. A. O., Ziolli, R. L., & de Campos, R. C. (2012). Alterations in morphometric and organosomatic indices and histopathological analyses indicative of environmental contamination in mullet, Mugil liza, from southeastern Brazil. Bulletin of Environmental Contamination and Toxicology, 89, 1154–1160.CrossRefGoogle Scholar
  21. Hauser-Davis, R. A., Bordon, I. C. A. C., Oliveira, T. F., & Ziolli, R. L. (2016). Metal bioaccumulation in edible target tissues of mullet (Mugil liza) from a tropical bay in southeastern Brazil. Journal of Trace Elements in Medicine and Biology, 36, 38–43.CrossRefGoogle Scholar
  22. Heidary, S., et al. (2012). Bioaccumulation of heavy metals Cu, Zn, and Hg in muscles and liver of the stellate sturgeon (Acipenser stellatus) in the Caspian Sea and their correlation with growth parameters Iranian Journal of Fisheries. Sciences, 11, 325–337.Google Scholar
  23. Hennemann, M. C., & Petrucio, M. M. (2011). Spatial and temporal dynamic of trophic relevant parameters in a subtropical coastal lagoon in Brazil. Environmental Monitoring and Assessment, 181, 347–361.CrossRefGoogle Scholar
  24. Henriques-de-Oliveira, C., Baptista, D. F., & Nessimian, J. L. (2007). Sewage input effects on the macroinvertebrate community associated to Typha domingensis Pers in a coastal lagoon in southeastern Brazil. Brazilian Journal of Biology, 67, 73–80.CrossRefGoogle Scholar
  25. Javed, M., Ahmad, I., Ahmad, A., Usmani, N., & Ahmad, M. (2016). Studies on the alterations in haematological indices, micronuclei induction and pathological marker enzyme activities in Channa punctatus (spotted snakehead) perciformes, channidae exposed to thermal power plant effluent. Springerplus, 5, 761.CrossRefGoogle Scholar
  26. Kalnejais, L. H., et al. (2007). Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments. Environmental Science and Technology, 41, 2822–2288.CrossRefGoogle Scholar
  27. Kasimoglu, C. (2014). The effect of fish size, age and condition factor on the contents of seven essential elements in Anguilla anguilla from Tersakan Stream Mugla (Turkey). Journal of Pollution Effects and Control, 2, 1–6.CrossRefGoogle Scholar
  28. Kim, J., & Kang, J. (2016). Oxidative stress, neurotoxicity, and metallothionein (MT) gene expression in juvenile rock fish Sebastes schlegelli under the different levels of dietary chromium (Cr6+) exposure. Ecotoxicology and Environmental Safety, 125, 78–84.CrossRefGoogle Scholar
  29. Kozlowsky-Suzuki, B., & Bozelli, R. L. (2002). Experimental evidence of the effect of nutrient enrichment on the zooplankton in a Brazilian coastal lagoon. Brazilian Journal of Biology, 62, 835–846.CrossRefGoogle Scholar
  30. Laflamme, J. S., et al. (2000). Interrenal metallothionein and cortisol secretion in relation to cd, cu, and Zn exposure in yellow perch, Perca flavescens, from Abitibi lakes. Canadian Journal of Fisheries and Aquatic Sciences, 57, 1692–1700.CrossRefGoogle Scholar
  31. Lemos, C. T., et al. (2001). Evaluation of basal micronucleus frequency and hexavalent chromium effects in fish erythrocytes. Environmental Toxicology and Chemistry, 20, 1320–1324.CrossRefGoogle Scholar
  32. Lemos, C. T., et al. (2008). Biomonitoring of genotoxicity using micronuclei assay in native population of Astyanax jacuhiensis (Characiformes: Characidae) at sites under petrochemical influence. Science of the Total Environment, 406, 337–343.CrossRefGoogle Scholar
  33. Li, L., Chen, H., Bi, R., & Xie, L. (2015). Bioaccumulation, subcellular distribution, and acute effects of chromium in japanese medaka (Oryzias latipes). Environmental Toxicology and Chemistry, 34, 2611–2617.CrossRefGoogle Scholar
  34. Lionetto, M. G., et al., (2013). Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. Biomed Research International. 321213 pp. 8.Google Scholar
  35. Luzhna, L., et al. (2013). Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Frontiers in Genetis, 4, 131.Google Scholar
  36. Nunes, B. (2011). The use of cholinesterases in ecotoxicology. In D. M. Whitacre (Ed.), Reviews of environmental contamination and toxicology (pp. 29–59). New York: Springer New York.Google Scholar
  37. Obe, G., Pfeiffer, P., Savage, J. R. K., Johannes, C., Goedecke, W., Jeppesen, P., Natarajan, A. T., Martínez-López, W., Folle, G. A., & Drets, M. E. (2002). Chromosomal aberrations: formation, identification and distribution. Mutation Research, 504, 17–36.CrossRefGoogle Scholar
  38. Oliveira, M. M., Silva Filho, M. V., Cunha Bastos, V. L. F., Fernandes, F. C., & Cunha Bastos, J. (2007). Brain acetylcholinesterase as a marine pesticide biomarker using Brazilian fishes. Marine Enviroemental Research, 63, 303–312.CrossRefGoogle Scholar
  39. Páez-Osuna, F., Frías-Espericueta, M. G., & Osuna-López, J. I. (1995). Trace metal concentrations in relation to season and gonadal maturation in the oyster Crassostrea iridescens. Marine Environmental Research, 40, 19–31.CrossRefGoogle Scholar
  40. Panosso, R. F., et al. (1998). Morfometria das lagoas Imboassica, Cabiúnas, Comprida e Carapebus: implicações para o seu funcionamento e manejo. In: F. A. Esteves, (Ed.), Ecologia das lagoas costeiras do Parque Nacional da Restinga de Jurubatiba e do município de Macaé (RJ), Macaé: Núcleo de Pesquisas Ecológicas de Macaé (NUPEM)/Universidade Federal do Rio de Janeiro pp. 464.Google Scholar
  41. Potter, V. R. (1955). Tissue homogenates. Methods in Enzymology, 5, 10–15.CrossRefGoogle Scholar
  42. Rajotte, J., et al., (2003). Indicators of chronic metal stress in wild yellow perch from metal-contaminated environments. In: Conference presentations, mining and environment, 28th annual meeting.Google Scholar
  43. Richetti, S. K., Rosemberg, D. B., Ventura-Lima, J., Monserrat, J. M., Bogo, M. R., & Bonan, C. D. (2011). Acetylcholinesterase activity and antioxidant capacity of zebrafish brain is altered by heavy metal exposure. Neurotoxicology, 32, 116–122.CrossRefGoogle Scholar
  44. Sanchez-Galan, S., Linde, A. R., Ayllon, F., & Garcia-Vazquez, E. (2001). Induction of micronuclei in eel (Anguilla anguilla L.) by heavy metals. Ecotoxicology and Environmental Safety, 49, 139–143.CrossRefGoogle Scholar
  45. Santos, R. F. B., & Ferreira, M. I. P. (2014). Impactos negativos, positivos e propostas mitigadoras em bacias hidrográficas: estudo de caso da BH da Lagoa Imboassica (Macaé-RJ). Boletim do Observatório Ambiental Alberto Ribeiro Lamego, 8, 77–99.CrossRefGoogle Scholar
  46. Saulnier, I., & Mucci, A. (2000). Trace metal remobilization following the resuspension of estuarine sediments: Saguenay Fjord, Canada. Applied Geochemistry, 15, 203–222.CrossRefGoogle Scholar
  47. Sinaie, M., Bastami, K. D., Ghorbanpour, M., Najafzadeh, H., Shekari, M., & Haghparast, S. (2010). Metallothionein biosynthesis as a detoxification mechanism in mercury exposure in fish, spotted scat (Scatophagus argus). Fish Physiology and Biochemistry, 36, 1235–1242.CrossRefGoogle Scholar
  48. Sipaúba-Tavares, L. H., Guariglia, C. S. T., & Braga, F. M. S. (2007). Effects of rainfall on water quality in six sequentially disposed fishponds with continuous water flow. Brazilian Journal of Biology, 67, 643–649.CrossRefGoogle Scholar
  49. Skoog, D. A., et al., (1992). Fundamentals of analytical chemistry. Brooks Cole. Fundamentals of analytical chemistry. Fort Worth, Tex Saunders College Pub. 6th ed.Google Scholar
  50. Squadrone, S., Prearo, M., Brizio, P., Gavinelli, S., Pellegrino, M., Scanzio, T., Guarise, S., Benedetto, A., & Abete, M. C. (2013). Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian rivers. Chemosphere, 90, 358–365.CrossRefGoogle Scholar
  51. Udroiu, I. (2006). The micronucleus test in piscine erythrocytes. Aquatic Toxicology, 79, 201–204.CrossRefGoogle Scholar
  52. van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13, 57–149.CrossRefGoogle Scholar
  53. Van Dyk, J. S., & Pletschke, B. (2011). Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere, 82, 291–307.CrossRefGoogle Scholar
  54. Vicari, M. R., Pazza, R., Artoni, R. F., Margarido, V. P., & Bertollo, L. A. C. (2006). Cytogenetics and biogeography: considerations about the natural origin of Hoplias malabaricus (Characiformes, Erythrinidae) on the Iguaçu river. Brazilian Archives of Biology and Technology, 49, 297–303.CrossRefGoogle Scholar
  55. Yadav, K. K., & Trivedi, S. P. (2009). Sublethal exposure of heavy metals induces micronuclei in fish, Channa punctata. Chemosphere, 77, 1495–1500.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • R. S. C. Coimbra
    • 1
  • M. S. Mascarenhas
    • 1
  • V. B. Saraiva
    • 1
  • C. R. Santos
    • 2
  • R. M. Lopes
    • 3
  • R. A. Hauser-Davis
    • 4
  • V. P. S. Oliveira
    • 5
  • M. M. Molisani
    • 6
  • M. G. Almeida
    • 7
  • C. E. Rezende
    • 7
  • C. E. V. Carvalho
    • 7
  • M. M. Oliveira
    • 1
  1. 1.Laboratório de Ecotoxicologia e Microbiologia AmbientalCampus Cabo Frio/Instituto Federal FluminenseCabo FrioBrazil
  2. 2.Departamento de Bioquímica - Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Laboratório de Comunicação Celular, Fundação Oswaldo CruzInstituto Oswaldo CruzRio de JaneiroBrazil
  4. 4.Centro de Estudos da Saúde do Trabalhador e Ecologia HumanaFIOCRUZRio de JaneiroBrazil
  5. 5.Polo de InovaçãoUPEA/Instituto Federal FluminenseCampos dos GoytacazesBrazil
  6. 6.Núcleo de Ecologia e de Desenvolvimento Socioambiental de MacaéUniversidade Federal do Rio de Janeiro (UFRJ)MacaéBrazil
  7. 7.Laboratório de Ciências Ambientais - Centro de Biociências e Biotecnologia (CBB)Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)Campos dos GoytacazesBrazil

Personalised recommendations