Advertisement

Land use/land cover change and its impacts on protected areas in Mengla County, Xishuangbanna, Southwest China

  • Yuan Jin
  • Hui Fan
Article
  • 219 Downloads

Abstract

Land use/land cover change (LUCC) in tropical areas threatens biodiversity and protected area integrity and then affects global ecosystem functions and services. In this study, the spatiotemporal patterns and processes of LUCC in Mengla County, Xishuangbanna, which is located on the northern edge of tropical Asia, were examined using a modified post-classification change detection technique based on random forest classifiers and Landsat images acquired at a 5-year time interval (e.g., 1994, 1999, 2004, 2009, and 2014) from 1994 to 2014, with a special focus on protected areas and their surroundings. The overall accuracies of land use/land cover classification reached 90.13–97.90%, with kappa coefficients of 0.84–0.96. Massive but decelerating conversion from forests to artificial plantations has occurred in recent decades. From 1994 to 2014, the area of plantations increased by 1833.85 km2, whereas that of forests decreased by 1942.67 km2. The expanded areas of artificial plantations decreased from 158.41 km2 per year in 1994–1999 to 59.70 km2 per year in 2009–2014. More considerable transformation from forests to artificial plantations occurred in lowland areas with elevations below 1000 m and at the edges of National Nature Reserves, which observed a forest loss rate of greater than 40% between 1994 and 2014. This poses serious challenges for sustaining both protected areas and surrounding human communities and to solve the increasingly escalating human-elephant conflicts. The complex food, biodiversity, and land use nexus in this region remain to be untangled in future study.

Keywords

Land use/land cover change (LUCC) Post-classification comparison Artificial plantation Protected areas Southwest China 

Notes

Acknowledgements

The authors would like to thank an anonymous reviewer for both insightful and constructive comments.

Funding information

This study was financially supported by the National Natural Science Foundation of China (41461017), the National Key R&D Plan of China (2016YFA0601601), the Candidates of the Young and Middle-Aged Academic Leaders of Yunnan Province (2014HB005), and the Program for Excellent Young Talents of Yunnan University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ahrends, A., Hollingsworth, P. M., Ziegler, A. D., Fox, J. M., Chen, H., Su, Y., & Xu, J. (2015). Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Global Environmental Change, 34, 48–58.  https://doi.org/10.1016/j.gloenvcha.2015.06.002.CrossRefGoogle Scholar
  2. Alroy, J. (2017). Effects of habitat disturbance on tropical forest biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 6056–6061.  https://doi.org/10.1073/pnas.1611855114.CrossRefGoogle Scholar
  3. Barlow, J., Lennox, G. D., Ferreira, J., Berenguer, E., Lees, A. C., Mac Nally, R., et al. (2016). Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 535(7610), 144–147.  https://doi.org/10.1038/nature18326.CrossRefGoogle Scholar
  4. Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.  https://doi.org/10.1023/A:1018054314350.CrossRefGoogle Scholar
  5. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.  https://doi.org/10.1023/A:1010933404324.CrossRefGoogle Scholar
  6. Butsic, V. A. N., Radeloff, V. C., Kuemmerle, T., & Pidgeon, A. M. (2012). Analytical solutions to trade-offs between size of protected areas and land-use intensity. Conservation Biology, 26(5), 883–893.  https://doi.org/10.1111/j.1523-1739.2012.01887.x.CrossRefGoogle Scholar
  7. Cao, H., Liu, J., Fu, C., Zhang, W., Wang, G., Yang, G., Luo L. (2017). Urban expansion and its impact on the land use pattern in Xishuangbanna since the reform and opening up of China. Remote Sensing, 9(2), 137.  https://doi.org/10.3390/rs9020137.CrossRefGoogle Scholar
  8. Cao, M., Zou, X., Warren, M., & Zhu, H. (2006). Tropical forests of Xishuangbanna, China. Biotropica, 38(3), 306–309.  https://doi.org/10.1111/j.1744-7429.2006.00146.x.CrossRefGoogle Scholar
  9. Chen, Y., Marino, J., Chen, Y., Tao, Q., Sullivan, C. D., Shi, K., & Macdonald, D. W. (2016). Predicting hotspots of human-elephant conflict to inform mitigation strategies in Xishuangbanna, Southwest China. PLoS One, 11(9), e0162035.  https://doi.org/10.1371/journal.pone.0162035.CrossRefGoogle Scholar
  10. Chen, H., Yi, Z.-F., Schmidt-Vogt, D., Ahrends, A., Beckschaefer, P., Kleinn, C., et al. (2016). Pushing the limits: the pattern and dynamics of rubber monoculture expansion in Xishuangbanna, SW China. PLoS One, 11(2), e0150062.  https://doi.org/10.1371/journal.pone.0150062.CrossRefGoogle Scholar
  11. Chica-Olmo, M., & Abarca-Hernández, F. (2000). Computing geostatistical image texture for remotely sensed data classification. Computers and Geosciences, 26(4), 373–383.  https://doi.org/10.1016/S0098-3004(99)00118-1.CrossRefGoogle Scholar
  12. Chica-Olmo, M., & Abarca-Hernández, F. (2004). Variogram derived image texture for classifying remotely sensed images. In S. M. de Jong & F. D. van der Meer (Eds.), Remote sensing image analysis: including the spatial domain (Vol. 5, pp. 93–111). Dordrecht: Springer.CrossRefGoogle Scholar
  13. Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., & Lambin, E. (2004). Digital change detection methods in ecosystem monitoring: a review. International Journal of Remote Sensing, 25(9), 1565–1596.  https://doi.org/10.1080/0143116031000101675.CrossRefGoogle Scholar
  14. Fan, H. (2013). Land-cover mapping in the Nujiang Grand Canyon: integrating spectral, textural, and topographic data in a random forest classifier. International Journal of Remote Sensing, 34(21), 7545–7567.  https://doi.org/10.1080/01431161.2013.820366.CrossRefGoogle Scholar
  15. Fan, H., Fu, X. H., Zhang, Z., & Wu, Q. (2015). Phenology-based vegetation index differencing for mapping of rubber plantations using Landsat OLI data. Remote Sensing, 7(5), 6041–6058.  https://doi.org/10.3390/rs70506041.CrossRefGoogle Scholar
  16. Feng, L., & Zhang, L. (2005). Habitat selection by Asian elephant(Elephas maximus) in Xishuangbanna, Yunnan, China. Acta Theriologica Sinica, 25(3), 229–236 (in Chinese with English abstract).Google Scholar
  17. Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al. (2005). Global consequences of land use. Science, 309(5734), 570–574.  https://doi.org/10.1126/science.1111772.CrossRefGoogle Scholar
  18. Fu, Y., Brookfield, H., Guo, H., Chen, J., Chen, A., & Cui, J. (2009). Smallholder rubber plantation expansion and its impact on local livelihoods, land use and agrobiodiversity, a case study from Daka, Xishuangbanna, southwestern China. International Journal of Sustainable Development and World Ecology, 16(1), 22–29.  https://doi.org/10.1080/13504500902753246.CrossRefGoogle Scholar
  19. Grogan, K., Pflugmacher, D., Hostert, P., Roberts, K., & Fensholt, R. (2015). Cross-border forest disturbance and the role of natural rubber in mainland Southeast Asia using annual Landsat time series. Remote Sensing of Environment, 169, 438–453.  https://doi.org/10.1016/j.rse.2015.03.001.CrossRefGoogle Scholar
  20. Guo, H. J., Christine, P., Kevin, C., Chen, A. G., & Fu, Y. N. (2002). Economic development, land use and biodiversity change in the tropical mountains of Xishuangbanna, Yunnan, Southwest China. Environmental Science and Policy, 5(6), 471–479.  https://doi.org/10.1016/S1462-9011(02)00093-X.CrossRefGoogle Scholar
  21. Hamilton, C. M., Martinuzzi, S., Plantinga, A. J., Radeloff, V. C., Lewis, D. J., Thogmartin, W. E., Heglund, P. J., & Pidgeon, A. M. (2013). Current and future land use around a nationwide protected area network. PLoS One, 8(1), 12.  https://doi.org/10.1371/journal.pone.0055737.CrossRefGoogle Scholar
  22. Hansen, A. J., De Fries, R., & Turner, W. (2004). Land use change and biodiversity: a synthesis of rates and consequences during the period of satellite imagery. In G. Gutman, A. C. Janetos, C. O. Justice, E. F. Moran, J. F. Mustard, R. R. Rindfuss, et al. (Eds.), Land change science: observing, monitoring, and understanding trajectories of change on the Earth’s surface (Vol. 6, pp. 277–299). Dordrecht: Springer.CrossRefGoogle Scholar
  23. Hansen, A. J., & DeFries, R. (2007). Land use change around nature reserves: implications for sustaining biodiversity. Ecological Applications, 17(4), 972–973.  https://doi.org/10.1890/05-1112.CrossRefGoogle Scholar
  24. Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853.  https://doi.org/10.1126/science.1244693.CrossRefGoogle Scholar
  25. Hu, H. B., Liu, W. J., & Cao, M. (2008). Impact of land use and land cover changes on ecosystem services in Menglun, Xishuangbanna, Southwest China. Environmental Monitoring and Assessment, 146(1–3), 147–156.  https://doi.org/10.1007/s10661-007-0067-7.CrossRefGoogle Scholar
  26. Jensen, J. R. (2004). Introductory digital image processing: a remote sensing perspective (digital change detection). New Jersey: Prentice-Hall.Google Scholar
  27. Jin, Y. (2018). LUCC modeling in the mountainous region of tropical northern margin based on CLUE-S model: a case study in Mengla Master’s thesis, Yunnan University. (in Chinese with English abstract) Kunming.Google Scholar
  28. Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3465–3472.  https://doi.org/10.1073/pnas.1100480108.CrossRefGoogle Scholar
  29. Laurance, W. F., Useche, D. C., Rendeiro, J., Kalka, M., Bradshaw, C. J. A., Sloan, S. P., et al. (2012). Averting biodiversity collapse in tropical forest protected areas. Nature, 489(7415), 290–294.  https://doi.org/10.1038/nature11318.CrossRefGoogle Scholar
  30. Li, H. M., Aide, T. M., Ma, Y. X., Liu, W. J., & Cao, M. (2007). Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodiversity and Conservation, 16(6), 1731–1745.  https://doi.org/10.1007/s10531-006-9052-7.CrossRefGoogle Scholar
  31. Li, H. M., Ma, Y. X., Aide, T. M., & Liu, W. J. (2008). Past, present and future land-use in Xishuangbanna, China and the implications for carbon dynamics. Forest Ecology and Management, 255(1), 16–24.  https://doi.org/10.1016/j.foreco.2007.06.051.CrossRefGoogle Scholar
  32. Liao, C., Li, P., Feng, Z., & Zhang, J. (2014). Area monitoring by remote sensing and spatiotemporal variation of rubber plantations in Xishuangbanna. Transactions of the Chinese Society of Agricultural Engineering, 30(22), 170–180. (in Chinese with English abstract).  https://doi.org/10.3969/j.issn.1002-6819.2014.22.021.CrossRefGoogle Scholar
  33. Liu, X. N., Feng, Z. M., Jiang, L. G., Peng, L. I., Liao, C. H., Yang, Y. Z., et al. (2013). Rubber plantation and its relationship with topographical factors in the border region of China, Laos and Myanmar. Journal of Geographical Sciences, 23(6), 1019–1040.  https://doi.org/10.1007/s11442-013-1060-4.CrossRefGoogle Scholar
  34. Liu, X. N., Feng, Z. M., Jiang, L. G., & Zhang, J. H. (2014). Spatial-temporal pattern analysis of land use and land cover change in Xishuangbanna. Resources Science, 36(2), 233–244 (in Chinese with English abstract).Google Scholar
  35. Mann, C. C. (2009). Addicted to rubber. Science, 325(5940), 564–566.  https://doi.org/10.1126/science.325_564.CrossRefGoogle Scholar
  36. Mertz, O., & Mertens, C. F. (2017). Land sparing and land sharing policies in developing countries–drivers and linkages to scientific debates. World Development, 98, 523–535.  https://doi.org/10.1016/j.worlddev.2017.05.002.CrossRefGoogle Scholar
  37. Monserud, R. A., & Leemans, R. (1992). Comparing global vegetation maps with the kappa statistic. Ecological Modelling, 62(4), 275–293.  https://doi.org/10.1016/0304-3800(92)90003-W.CrossRefGoogle Scholar
  38. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858.  https://doi.org/10.1038/35002501.CrossRefGoogle Scholar
  39. Pielke, R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Hossain, F., et al. (2011). Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdisciplinary Reviews: Climate Change, 2(6), 828–850.  https://doi.org/10.1002/wcc.144.CrossRefGoogle Scholar
  40. Radeloff, V. C., Stewart, S. I., Hawbaker, T. J., Gimmi, U., Pidgeon, A. M., Flather, C. H., Hammer, R. B., & Helmers, D. P. (2010). Housing growth in and near United States protected areas limits their conservation value. Proceedings of the National Academy of Sciences of the United States of America, 107(2), 940–945.  https://doi.org/10.1073/pnas.0911131107.CrossRefGoogle Scholar
  41. Richards, D. R., & Friess, D. A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proceedings of the National Academy of Sciences of the United States of America, 113(2), 344–349.  https://doi.org/10.1073/pnas.1510272113.CrossRefGoogle Scholar
  42. Rodriguez-Galiano, V. F., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson, P. M., & Jeganathan, C. (2012). Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sensing of Environment, 121(138), 93–107.  https://doi.org/10.1016/j.rse.2011.12.003.CrossRefGoogle Scholar
  43. Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67(1), 93–104.  https://doi.org/10.1016/j.isprsjprs.2011.11.002.CrossRefGoogle Scholar
  44. Sadali, N. H. (2013). Determinant of volatility natural rubber price. Social Science Electronic Publishing.  https://doi.org/10.2139/ssrn.2276767.
  45. Senf, C., Pflugmacher, D., Van Der Linden, S., & Hostert, P. (2013). Mapping rubber plantations and natural forests in Xishuangbanna (Southwest China) using multi-spectral phenological metrics from MODIS time series. Remote Sensing, 5(6), 2795–2812.  https://doi.org/10.3390/rs5062795.CrossRefGoogle Scholar
  46. Singh, A. (1989). Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989–1003.  https://doi.org/10.1080/01431168908903939.CrossRefGoogle Scholar
  47. Sloan, S., & Sayer, J. A. (2015). Forest resources assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. Forest Ecology and Management, 352(4), 134–145.  https://doi.org/10.1016/j.foreco.2015.06.013.CrossRefGoogle Scholar
  48. Sodhi, N. S., Posa, M. R. C., Lee, T. M., Bickford, D., Koh, L. P., & Brook, B. W. (2010). The state and conservation of southeast Asian biodiversity. Biodiversity and Conservation, 19(2), 317–328.  https://doi.org/10.1007/s10531-009-9607-5.CrossRefGoogle Scholar
  49. Tapia-Armijos, M. F., Homeier, J., Espinosa, C. I., Leuschner, C., & de la Cruz, M. (2015). Deforestation and forest fragmentation in South Ecuador since the 1970s–losing a hotspot of biodiversity. PLoS One, 10(9), e0133701.  https://doi.org/10.5061/dryad.32451.CrossRefGoogle Scholar
  50. Trisurat, Y., Alkemade, R., & Verburg, P. H. (2010). Projecting land-use change and its consequences for biodiversity in northern Thailand. Environmental Management, 45(3), 626–639.  https://doi.org/10.1007/s00267-010-9438-x.CrossRefGoogle Scholar
  51. Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20666–20671.  https://doi.org/10.1073/pnas.0704119104.CrossRefGoogle Scholar
  52. Vester, H. F. M., Lawrence, D., Eastman, J. R., Turner II, B. L., Calme, S., Dickson, R., et al. (2007). Land change in the southern Yucatan and Calakmul biosphere reserve: effects on habitat and biodiversity. Ecological Applications, 17(4), 989–1003.  https://doi.org/10.1890/05-1106.CrossRefGoogle Scholar
  53. Watson, J. E. M., Dudley, N., Segan, D. B., & Hockings, M. (2014). The performance and potential of protected areas. Nature, 515(7525), 67–73.  https://doi.org/10.1038/nature13947.CrossRefGoogle Scholar
  54. Wilson, T., Sleeter, B., Sleeter, R., & Soulard, C. (2014). Land-use threats and protected areas: a scenario-based, landscape level approach. Land, 3(2), 362–389.  https://doi.org/10.3390/land3020362.CrossRefGoogle Scholar
  55. Xu, J. C., Grumbine, R. E., & Beckschäfer, P. (2014). Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong region. Ecological Indicators, 36(1), 749–756.  https://doi.org/10.1016/j.ecolind.2012.08.023.CrossRefGoogle Scholar
  56. Xu, J. C., Jefferson, F., John, B. V., Zhang, P. F., Fu, Y. S., Yang, L. X., et al. (2005). Land-use and land-cover change and farmer vulnerability in Xishuangbanna prefecture in southwestern China. Environmental Management, 36(3), 404–413.  https://doi.org/10.1007/s00267-003-0289-6.CrossRefGoogle Scholar
  57. Xu, J. T., Yi, Y. Y., Köhlin, G., Xu, J. T., & Berck, P. (2014). Property rights, tenure security and forest investment incentives: evidence from China’s collective forest tenure reform. Environment and Development Economics, 19(1), 48–73.  https://doi.org/10.1017/S1355770X13000272.CrossRefGoogle Scholar
  58. Yang, H. (2017). China’s natural forest protection program: progress and impacts. Forestry Chronicle, 93(2), 113–117.  https://doi.org/10.5558/tfc2017-017.CrossRefGoogle Scholar
  59. Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. (2005). Land cover classification and change analysis of the twin cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sensing of Environment, 98(2–3), 317–328.  https://doi.org/10.1016/j.rse.2005.08.006.CrossRefGoogle Scholar
  60. Zhang, J., & Cao, M. (1995). Tropical forest vegetation of Xishuangbanna, SW China and its secondary changes, with special reference to some problems in local nature conservation. Biological Conservation, 73(3), 229–238.  https://doi.org/10.1016/0006-3207(94)00118-a.CrossRefGoogle Scholar
  61. Zhang, L., Ma, L., & Feng, L. (2006). New challenges facing traditional nature reserves: Asian elephant (Elephas maximus) conservation in China. Integrative Zoology, 1(4), 179–187.  https://doi.org/10.1111/j.1749-4877.2006.00031.x.CrossRefGoogle Scholar
  62. Zhang, L., & Wang, N. (2003). An initial study on habitat conservation of Asian elephant (Elephas maximus), with a focus on human elephant conflict in Simao, China. Biological Conservation, 112(3), 453–459.  https://doi.org/10.1016/S0006-3207(02)00335-X.CrossRefGoogle Scholar
  63. Ziegler, A. D., Fox, J. M., & Xu, J. (2009). The rubber juggernaut. Science, 324(5930), 1024–1025.  https://doi.org/10.1126/science.1173833.CrossRefGoogle Scholar
  64. Zong, J. K., Liu, S. Q., Xu, H. L., Wang, L. X., & Guo, X. M. (2014). Population size and distribution changes of Asian elephant in Menglazi nature reserve, Xishuangbanna nature reserve. Forest Invenory and Planning, 39(1), 89–93 (in Chinese with English abstract).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Asian International Rivers Center of Yunnan UniversityKunmingChina
  2. 2.Yunnan Key Laboratory of International Rivers and Transboundary Eco-securityKunmingChina

Personalised recommendations