Spatial and temporal variability of soil moisture in relation with topographic and meteorological factors in south of Ardabil Province, Iran

  • Husain Akbari Majdar
  • Mehdi Vafakhah
  • Mohammad Sharifikia
  • Ardavan Ghorbani


This research has been tried to evaluate the spatial and temporal variability of surface soil moisture (SM) in a semi-arid and cold region of Ardabil Province in Iran with an area of about 10,000 km2. The used SM data is the SMAP Enhanced L2 Radiometer Half-Orbit 9 km Soil Moisture, provided by NASA. The study area was subdivided into 120 locations consisting 10 × 12 grids, matching with the pixels of the SMAP images. In order to evaluate the spatial variations of SM, the relation of mean SM with coefficient of variation and standard deviation has been evaluated and, then, the representative location for mean SM of the area has been identified using the index of temporal stability. Moreover, the effect of topographic factors (elevation, slope, and aspect) on spatial variations of SM, and the effect of meteorological factors (rainfall, sunshine hours, temperature, relative humidity, wind speed, and number of dry days) on temporal variations of SM have been investigated. The relation of mean SM with the coefficient of variation and standard deviation represented an exponentially negative and upper convex shape, respectively. The SM content of the representative location had a correlation with the mean SM of the area with the coefficient of determination value of 0.91. Of the three topographic factors, only the slope factor, and of the meteorological factors all of them except the wind speed have showed a significant relationship with SM spatial and temporal variations respectively.


Topographic factors Meteorological factors SMAP Firoozabad watershed 


  1. Ali, G., Roy, A. G., & Legendre, P. (2010). Spatial relationships between soil moisture patterns and topographic variables at multiple scales in a humid temperate forested catchment. Water Resources Research, 46(10), 1–17.CrossRefGoogle Scholar
  2. Barretti, B. W., Dwyer, E., & Whelan, P. (2009). Soil moisture retrieval from active space borne microwave observations: an evaluation of current techniques. Remote Sensing, 1(3), 210–242.CrossRefGoogle Scholar
  3. Brocca, L., Morbidelli, R., Melone, F., & Moramarco, T. (2007). Soil moisture spatial variability in experimental areas of Central Italy. Journal of Hydrology, 333, 356–373.CrossRefGoogle Scholar
  4. Brocca, L., Melone, F., Moramarco, T., & Morbidelli, R. (2009). Soil moisture temporal stability over experimental areas in Central Italy. Geoderma, 148, 364–374.CrossRefGoogle Scholar
  5. Brocca, L., Melone, F., Moramarco, T., & Morbidelli, R. (2010). Spatial–temporal variability of soil moisture and its estimation across scales. Water Resources Research, 46, W02516. Scholar
  6. Cavagnaro, T. R. (2015). Soil moisture legacy effects: impacts on soil nutrients, plants and mycorrhizal responsiveness. Soil Biology and Biochemistry, 95, 173–179.CrossRefGoogle Scholar
  7. Chapin, F. C., McFarland, J., McGuire, A. D., Euskirchen, E. S., Ruess, R. W., & Knut Kielland, K. (2009). The changing global carbon cycle: linking plant–soil carbon dynamics to global consequences. Journal of Ecology, 97, 840–850.CrossRefGoogle Scholar
  8. Cho, E., & Choi, C. (2014). Regional scale spatio-temporal variability of soil moisture and its relationship with meteorological factors over the Korean Peninsula. Journal of Hydrology, 516, 317–329.CrossRefGoogle Scholar
  9. Choi, M., & Jacobs, J. M. (2011). Spatial soil moisture scaling structure during soil moisture experiment 2005. Hydrological Processes, 25(6), 926–932.CrossRefGoogle Scholar
  10. Entekhabi, D., Njoku, E. G., O’Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., & Johnson, J. (2010). The soil moisture active passive (SMAP) mission. Proceedings Of IEEE, 98(5), 704–716.CrossRefGoogle Scholar
  11. Famiglietti, J. S., Rudnicki, J. W., & Rodell, M. (1998). Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of Hydrology, 210, 259–281.CrossRefGoogle Scholar
  12. Famiglietti, J. S., Ryu, D., Berg, A. A., Rodell, M., & Jackson, T. J. (2008). Field observations of soil moisture variability across scales. Water Resource Research, 44, W01423. Scholar
  13. FAO, IIASA, ISRIC, ISS-CAS, JRC. (2009). Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria. Available online:
  14. Giorgi, F., & Avissar, R. (1997). Representation of heterogeneity of effects in earth system modeling: experience from land surface modeling. Reviews of Geophysics, 35, 413–438.CrossRefGoogle Scholar
  15. Huang, S., Huang, Q., Leng, G., Zhao, M., & Meng, E. (2017). Variations in annual water-energy balance and their correlations with vegetation and soil moisture dynamics: a case study in the Wei River basin, China. Journal of Hydrology, 546, 515–525.CrossRefGoogle Scholar
  16. Jackson, T., O’Neill, P., Chan, S., Bindlish, R., Colliander, A., Chen, F., Dunbar, S., et al. (2016). Calibration and validation for the L2/3_SM_P version 4 and L2/3_SM_P_E version 1 data products, SMAP project, JPL D-56297. Pasadena: Jet Propulsion Laboratory.Google Scholar
  17. Kornelsen, K. C., & Coulibaly, P. (2013). Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. Journal of Hydrology, 476, 460–489.CrossRefGoogle Scholar
  18. Martínez, G., Pachepsky, Y. A., Vereecken, H., Hardelauf, H., Herbst, M., & Vanderlinden, K. (2013). Modeling local control effects on the temporal stability of soil water content. Journal of Hydrology, 481, 106–118.CrossRefGoogle Scholar
  19. Martínez-Fernández, J. M., & Ceballos, A. (2005). Mean soil moisture estimation using temporal stability analysis. Journal of Hydrology, 312, 28–38.CrossRefGoogle Scholar
  20. Mason, D. C., Garcia-Pintado, J., Cloke, H. L., & Dance, S. L. (2016). Evidence of a topographic signal in surface soil moisture derived from ENVISAT ASAR wide swath data. International Journal of Applied Earth Observation and Geoinformation, 45, 178–186.CrossRefGoogle Scholar
  21. Mohanty, B. P., Cosh, M. H., Lakshmi, V., & Montzka, C. (2017). Soil moisture remote sensing: state-of-the-science. Vadose. Zone Journal, 16(1). Scholar
  22. O’Neill, P. E., Chan, S., Njoku, E. G., Jackson, T., & Bindlish, R. (2018). SMAP enhanced L2 radiometer half-orbit 9 km EASE-grid soil moisture, version 2. Boulder: NASA National Snow and Ice Data Center Distributed Active Archive Center. Accessed 20 Mar 2018.CrossRefGoogle Scholar
  23. Penna, D., Brocca, L., Borga, M., & Dalla Fontana, G. (2013). Soil moisture temporal stability at different depths on two alpine hillslopes during wet and dry periods. Journal of Hydrology, 477, 55–71.CrossRefGoogle Scholar
  24. Qiu, Y., Fu, B., Wang, J., & Chen, L. (2001). Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. Journal of Hydrology, 240, 243–263.CrossRefGoogle Scholar
  25. Rosenbaum, U., Bogena, H. R., Herbst, M., Huisman, J. A., Peterson, T. J., Weuthen, A., Western, A. W., & Vereecken, H. (2012). Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resources Research, 48, W10544. Scholar
  26. Schmugge, T., Gloersen, P., Wilheit, T., & Geiger, F. (1974). Remote sensing of soil moisture with microwave radiometers. Journal of Geophysical Research, 79, 317–323.CrossRefGoogle Scholar
  27. Sur, C., Jung, Y., & Choi, M. (2013). Temporal stability and variability of field scale soil moisture on mountainous hillslopes in Northeast Asia. Geoderma, 207–208, 234–243.CrossRefGoogle Scholar
  28. Takagi, K., & Lin, H. S. (2011). Temporal dynamics of soil moisture spatial variability in the shale hills critical zone observatory. Vadose Zone Journal, 10, 832–842.CrossRefGoogle Scholar
  29. Vachaud, G. A., Passerat de Silans, A., Balabanis, P., & Vauclin, M. (1985). Temporal stability of spatially measured soil water probability density function. Soil Science Society of America Journal, 49(4), 822–828.CrossRefGoogle Scholar
  30. Van Dijk, A. I. J. M., & Renzullo, L. J. (2011). Water resource monitoring systems and the role of satellite observations. Hydrological Earth System Science, 15, 39–55.CrossRefGoogle Scholar
  31. Vanderlinden, K., Vereecken, H., Hardelauf, H., Herbst, M., Martinez, G., Cosh, M., & Pachepsky, Y. (2012). Temporal stability of soil water contents: a review of data and analyses. Vadose Zone Journal, 11(4). doi Scholar
  32. Zhang, J. G., Chen, H. S., Su, Y. R., Kong, X. L., Zhang, W., Shi, Y., Liang, H. B., & Shen, G. M. (2011). Spatial variability and patterns of surface soil moisture in a field plot of karst area in Southwest China. Plant Soil Environment, 57(9), 409–417.CrossRefGoogle Scholar
  33. Zhang, X., Zhang, T., Zhou, P., Shao, Y., & Gao, S. (2017). Validation analysis of SMAP and AMSR2 soil moisture products over the United States using ground-based measurements. Remote Sensing, 9(2), 104. Scholar
  34. Zhao, Y., Peth, S., Wang, X. Y., Lin, H., & Horn, R. (2010). Controls of surface soil moisture spatial patterns and their temporal stability in a semi-arid steppe. Hydrological Processes, 24(18), 2507–2519.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Watershed Management, Faculty of Natural ResourcesTarbiat Modares UniversityNoorIran
  2. 2.Department of Remote Sensing, Faculty of HumanitiesTarbiat Modares UniversityTehranIran
  3. 3.Department of Range and Watershed ManagementUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations