Advertisement

A comparison of the antioxidant activities and biomonitoring of heavy metals by pollen in the urban environments

  • İlginç Kızılpınar Temizer
  • Aytaç Güder
  • Fulya Aydın Temel
  • Esin AVCI
Article
  • 136 Downloads

Abstract

Pollen is one of the most valuable nutrients due to its content and antioxidant activity. In this study, its botanic origin, total phenol content (TPC), total flavonoid content (TFC), the hydrogen peroxide scavenging activity (HPSA) (in terms of SC50), ferric reducing antioxidant power capacity (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (in terms of SC50), metal-chelating activity (MCA) (%), and heavy metal content were examined to determine the quality of pollen that has been collected from seven different cities of Turkey. According to the melissopalynological analysis, the botanic origin of samples is six uni-flora and one multiflora. The TPC, TFC, HPSA, FRAP, DPPH, and MCA were found between 1360.70–2981.34 mg GAE/100 g, 74.23–111.74 mg CAE/100 g, 25.56–30.28 μg/mL, 71.92–73.86%, 52.26–53.27 μg/mL, and 43.97–65.21%, respectively. When obtained results compared to the standards (Butylated Hydroxy Anisole (BHA), Butylated Hydroxy Toluene (BHT) and α-Tocopherol (TOC)), pollen samples showed the effective antioxidant properties with respect to HPSA, FRAP, and DPPH radical scavenging activity. In addition, it was observed that honey samples were being contaminated with most of the metals to some extent (Al, Cr, Mn, Fe, Ni, Cu, Zn, B, As, Te, U), while some heavy metals (Co, Cd, V, Ga, and Ag) were never determined in all samples. However, Pb was determined only in sample 2 and sample 4, Mo in sample 1 and sample 2. According to meteorological parameters, samples 3, 4, and 5 were distinguished from the other samples. Finally, the data indicate that pollen could be affected by environmental pollutions.

Keywords

Antioxidant activity Melissopalynological analysis Pollen Heavy metal Biomonitoring 

Notes

Acknowledgements

The authors thank the Giresun University for providing the opportunity to research. The authors are grateful to Feyza Çolakoğlu from the University of Sidney for their kind help with the English language. The authors wish to extend our thanks to the English-editing-service of Turkey.

Funding information

This work was financed by a scholarship of the Giresun University for support of Scientific/Technological Research (FEN-BAP-A-140316-80).

References

  1. Alaşalvar, C., Güder, A., Gökçe, H., Kaştaş, Ç. A., & Çelik, R. Ç. (2017). Theoretical, spectroscopic and antioxidant activity studies on (E)-2-[(2-fluorophenylimino)methyl]-4-hydroxyphenol and (E)-2-[(3-fluorophenylimino)methyl]-4-hydroxyphenol compounds. Journal of Molecular Structure, 1133, 37–48.CrossRefGoogle Scholar
  2. Almeida-Muradian, L. B., Pamplona, L. C., Coimbra, S., & Barth, O. M. (2005). Chemical composition and botanical evaluation of dried bee pollen pellets. Journal of Food Composition and Analysis, 18(1), 105–111.CrossRefGoogle Scholar
  3. Altunatmaz, S. S., Tarhan, D., Aksu, F., Barutçu, U. B., & Or, M. E. (2017). Mineral element and heavy metal (cadmium, lead and arsenic) levels of bee pollen in Turkey. Food Science and Technology, 37(1), 136–141.CrossRefGoogle Scholar
  4. Arslan, S., & Arıkan, A. (2013). Accumulation of heavy metals in bee products effect of distance from highway. Turkish Journal of Agriculture - Food Science and Technology, 1(2), 90–93.CrossRefGoogle Scholar
  5. Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200.CrossRefGoogle Scholar
  6. Bogdanov, S. (2006). Contaminants of bee products. Apidologie, 37(1), 1–18.CrossRefGoogle Scholar
  7. Carpes, S. T., Begnini, R., De Alencar, S. M., & Masson, M. L. (2007). Study of preparations of bee pollen extracts, antioxidant and antibacterial activity. Ciência e Agrotecnologia. Lavras, 31(6), 1818–1825.Google Scholar
  8. Çelemli, Ö. G., & Sorkun, K. (2012). The plant choices of honey bees to collect propolis in Tekirdag-Turkey. Hacettepe Journal of Biology and Chemistry, 40(1), 45–51.Google Scholar
  9. Chung, Y. C., Chang, C. T., Chao, W. W., Lin, C. F., & Chou, S. T. (2002). Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR–NK1. Journal of Agricultural and Food Chemistry, 50(8), 2454–2458.CrossRefGoogle Scholar
  10. Conti, M. E., & Botre, F. (2001). Honeybees and their products as potential bioindicators of heavy metals contamination. Environmental Monitoring and Assessment, 69(3), 267–282.CrossRefGoogle Scholar
  11. Cosmulescu, S., Trandafir, I., & Nour, V. (2015). Chemical composition and antioxidant activity of walnut pollen samples. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(2), 361–365.CrossRefGoogle Scholar
  12. Diaz-Losada, E., Ricciardelli-D’Albore, G., & Saa-Otero, M. P. (1998). The possible use of honeybee pollen loads in characterizing vegetation. Grana, 37(3), 155–163.CrossRefGoogle Scholar
  13. Dinis, T. C. P., Maderia, V. M. C., & Almeida, L. M. (1994). Action of phenolic derivates (acetoaminophen, salycilate, and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1), 161–169.CrossRefGoogle Scholar
  14. Dinkov, D., & Stratev, D. (2016). The content of two toxic heavy metals in Bulgarian bee pollen. International Food Research Journal, 23(3), 1343–1345.Google Scholar
  15. Erik, S. & Doğan, C. (2002) Allerjen Bitkiler, Editör: Metin Önerci, 2002. Allerjik Rinosinüzitler, Rekmay Ltd., Ankara, 257–338.Google Scholar
  16. Fadzilah, N. H., Jaapar, M. F., Jajuli, R., & Omar, W. A. W. (2017). Total phenolic content, total flavonoid and antioxidant activity of ethanolic bee pollen extracts from three species of Malaysian stingless bee. Journal of Apicultural Research, 56(2), 130–135.CrossRefGoogle Scholar
  17. Feás, X., Tato, M. P. V., Estevinho, L., Seijas, J. A., & Iglesias, A. (2012). Organic bee pollen: botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality. Molecules, 17(7), 8359–8377.CrossRefGoogle Scholar
  18. Formicki, G., Greń, A., Stawarz, R., Zyśk, B., & Gał, A. (2013). Metal content in honey, propolis, wax, and bee pollen and implications for metal pollution monitoring. Polish Journal of Environmental Studies, 22(1), 99–106.Google Scholar
  19. Freire, K. R. L., Lins, A. C. S., Dórea, M. C., Santos, F. A. R., Camara, C. A., & Silva, T. M. S. (2012). Palynological origin, phenolic content, and antioxidant properties of honeybee-collected pollen from Bahia, Brazil. Molecules, 17(2), 1652–1664.CrossRefGoogle Scholar
  20. Gabriele, M., Parri, E., Felicioli, A., Sagona, S., Pozzo, L., Biondi, C., Domenici, V., & Pucci, L. (2015). Phytochemical composition and antioxidant activity of Tuscan bee pollen of different botanic origins. Italian Journal of Food Science, 27(2), 248–259.Google Scholar
  21. Gergen, I., Gogoaşǎ, I., Drǎgan, S., Moigrdean, D. & Hǎrmǎnescu, M. (2006). Heavy metal status in fruits and vegetables from a non-polluted area of Romania (Banat country), metal elements in environment, medicine and biology, Gârban Z., Drǎgan P. (Eds. Symp. Series), Tome VII, Publishing House Eurobit, Timişoara, 2006, 149–165.Google Scholar
  22. Graikou, K., Kapeta, S., Aligiannis, N., Sotiroudis, G., Chondrogianni, N., Gonos, E., & Chinou, I. (2011). Chemical analysis of Greek pollen—antioxidant antimicrobial and proteasome activation properties. Chemistry Central Journal, 5(33), 1–9.Google Scholar
  23. Güder, A., & Korkmaz, H. (2012). Evaluation of in-vitro antioxidant properties of hydroalcoholic solution extracts Urtica dioica L., Malva neglecta Wallr and their mixture. Iranian Journal of Pharmaceutical Research, 11(3), 913–923.Google Scholar
  24. Güder, A., Korkmaz, H., Gökce, H., Alpaslan, Y. B., & Alpaslan, G. (2014). Isolation, characterization, spectroscopic properties and quantum chemical computations of an important phytoalexin resveratrol as antioxidant component from Vitis labrusca L. and their chemical compositions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 378–395.CrossRefGoogle Scholar
  25. Harmanescu, M., Bordean, D., & Gergen, I. (2007). Heavy metals contents of bee’s pollen from different locations of Romania. Lucrǎri Ştiintifice Medicinǎ Veterinarǎ, XL, 253–260.Google Scholar
  26. Ismail, A. H. M., Owayss, A. A., Mohanny, K. M., & Salem, R. A. (2013). Evaluation of pollen collected by honey bee, Apis mellifera L. colonies at Fayoum governorate, Egypt. Part 1: Botanical origin. Journal of the Saudi Society of Agricultural Sciences, 12(2), 129–135.CrossRefGoogle Scholar
  27. Kalbande, D. M., Dhadse, S. N., Chaudhari, P. R., & Wate, S. R. (2008). Biomonitoring of heavy metals by pollen in urban environment. Environmental Monitoring and Assessment, 138(1–3), 233–238.CrossRefGoogle Scholar
  28. Kaştaş, Ç. A., Kaştaş, G., Güder, A., Gür, M., Muğlu, H., & Büyükgüngör, O. (2017). Investigation of two o-hydroxy Schiff bases in terms of prototropy and radical scavenging activity. Journal of Molecular Structure, 1130, 623–632.CrossRefGoogle Scholar
  29. Kızılpınar, T. İ., Güder, A., & Gençay Çelemli, Ö. (2016). Botanic origin, various physicochemical and antioxidant properties of honey samples from Giresun, Turkey. Hacettepe Journal of Biology and Chemistry, 44(3), 209–215.CrossRefGoogle Scholar
  30. Kocaer, F. O., & Başkaya, H. S. (2003). Remediation technologies for metal-contaminated soil. Uludağ University Journal of the Faculty of Engineering, 8(1), 121–131.Google Scholar
  31. Louveaux, J., Maurizio, A., & Vorwohl, G. (1978). Methods of Melissopalynology. Bee World, 59, 139–157.CrossRefGoogle Scholar
  32. Madras-Majewska, B., & Jasinski, Z. (2003). Lead content of bees, brood and bee products from different regions of Poland. Journal of Apicultural Science, 47(2), 47–55.Google Scholar
  33. Madras-Majewska B., Jasinski Z., Zarski T. & Zarska H. (2002). The content of mercury in honeybee body and bee products originating from different region of Poland, 5th Int. Conf. On the black bee Apis mellifera mellifera, Wierzba, Poland, 2–6 September 2002, pp. 101–102.Google Scholar
  34. Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and plant-asisted bioremediation of heavy metal polluted environments: a review. International Journal of Environmental Research and Public Health, 14(12), 1–26.CrossRefGoogle Scholar
  35. Rebiai, A., & Lanez, T. (2012). Chemical composition and antioxidant activity of Apis mellifera bee pollen from Northwest Algeria. Journal of Fundamental and Applied Science, 4(2), 155–163.CrossRefGoogle Scholar
  36. Roman, A., Popiela-Pleban, E., Migdat, P., & Kruszynski, W. (2016). As, Cr, Cd, and bee product from a polish industrialized region. Open Chemistry, 14(1), 33–36.CrossRefGoogle Scholar
  37. Ruch, R. J., Cheng, S. J., & Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10(6), 1003–1008.CrossRefGoogle Scholar
  38. Sabo, M., Potočnjak, M., Banjari, I., & Petrović, D. (2011). Pollen analysis of honeys from Varaždin County. Croatia. Turkish Journal of Botany, 35(5), 581–587.Google Scholar
  39. Serra Bonvehí, J. (1988). Plant origin of honeybee-collected pollen produced in Spain. Anales de la Asociación de Palinólogos de Lengua Española, 4, 73–78.Google Scholar
  40. Silva, T. M. S., Camara, C. A., Lins, A. C. S., Agra, M. d. F., Silva, E. M. S., Reis, I. T., & Freitas, B. M. (2009). Chemical composition, botanical evaluation and screening of radical scavenging activity of collected pollen by the stingless bees Melipona rufiventris (Uruçu-amarela). Anais Da Academia Brasileira de Ciencias, 81(2), 173–178.CrossRefGoogle Scholar
  41. Slinkard, K., & Singleton, V. L. (1977). Total phenol analyses: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49–55.Google Scholar
  42. Sorkun, K. (2000). Türkiye’nin nektarlı bitkileri ve polenleri. Ankara: Türkiye Kalkınma Vakfı yayını.Google Scholar
  43. Sorkun, K. (2008). Türkiye’nin nektarlı bitkileri polenleri ve balları (p. 352). Ankara: Palme Yayınları.Google Scholar
  44. Stojko, A. R., Stojko, J., Gorecka, A. K., Gorecki, M., Sobczak, A., Stojko, R., & Buszman, E. (2015). Polyphenol content and antioxidant activity of bee pollen extracts from Poland. Journal of Apicultural Research, 54(5), 482–490.CrossRefGoogle Scholar
  45. Temel, E., Alaşalvar, C., Gökçe, H., Güder, A., Albayrak, Ç., Alpaslan, Y. B., Alpaslan, G., & Dilek, N. (2015). DFT calculations, spectroscopy and antioxidant activity studies on (E)-2-nitro-4-[(phenylimino)methyl]phenol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136(B), 534–546.CrossRefGoogle Scholar
  46. Ulusoy, E., & Kolaylı, S. (2014). Phenolic composition and antioxidant properties of anzer bee pollen. Journal of Food Biochemistry, 38(1), 73–82.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vocational High School of Health Services, Program of Emergency and First AidGiresun UniversityGiresunTurkey
  2. 2.Engineering Faculty, Department of Environmental EngineeringGiresun UniversityGiresunTurkey
  3. 3.Science and Art Faculty, Department of StatisticsGiresun UniversityGiresunTurkey

Personalised recommendations