Skip to main content
Log in

Non-potable use of Lisbon underground water: microbiological and hydrochemical data from a 4-year case study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mitigation of global warming scenarios by the United Nations Economic Commission for Europe (UNECE) water convention requires better water use policies by all management parties. One of Lisbon’s municipal contributions to target a sustainable urban water cycle has been to assess the microbial and hydrochemical quality of groundwater. The aim is to clarify the possible existence of contaminations and respective sources, seasonality, and to assess non-drinking alternative uses of those waters. To this respect, five water sources over a 4-year period were monitored for physical, chemical, and microbial parameters (temperature, pH, NO2, NO3, NO4, oxidability, conductivity, total hardness, Escherichia coli, total coliforms, enterococci, and heterotrophic plate count at 22 °C and 37 °C). The results show mean values of physical and chemical parameters within the WHO and national drinking water guidelines and regulations. However, microbial parameters exceed these limits, showing no seasonality. Microbial contamination may not necessarily imply the uselessness of groundwater for uses other than for drinking. For routine water quality assessment, a selection of a more adequate group of microbiological indicators is necessary, in order to evaluate potential public health risks, regarding the use of the identified water sources for non-potable purposes like irrigation or street cleaning. This approach is being promoted by the UNECE’s protocol for water and health, article 6, 2 (i); in accordance with the scope of the UN’s sustainable goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed W., Sritharan T., Palmer A, et al (2013) Evaluation of bovine feces-associated microbial source tracking markers and their correlations with fecal indicators and zoonotic pathogens in a Brisbane, Australia, Reservoir. 79:2682–2691. https://doi.org/10.1128/AEM.03234-12.

    Article  CAS  Google Scholar 

  • Al-Khatib, I. A., Kamal, S., Taha, B., et al. (2003). Water-health relationships in developing countries: a case study in Tulkarem district in Palestine. International Journal of Environmental Health Research, 13, 199–206. https://doi.org/10.1080/0960312031000098099.

    Article  Google Scholar 

  • Almeida C., Mendonça J. J. L., Jesus M. R., Gomes AJ (2000) Actualização do Inventário dos Sistemas Aquíferos de Portugal Continental. Cent Geol da FCUL e Inst da Água Lisboa 1:133. https://doi.org/10.13140/RG.2.1.1012.6160

  • Anderson, K. L., Whitlock, J. E., Valerie, J., & Harwood, V. J. (2005). Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Applied and Environmental Microbiology, 71, 3041–3048. https://doi.org/10.1128/AEM.71.6.3041.

    Article  CAS  Google Scholar 

  • de Andrade, V. J. S. (1850). Memória sobre Chafarizes, Bicas. In Fontes e Poços Públicos de Lisboa. Lisboa: Imprensa Silviana.

    Google Scholar 

  • Atekwana, E. A., Atekwana, E. A., Rowe, R. S., Werkema Jr., D. D., & Legall, F. D. (2004). The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. Journal of Applied Geophysics, 56, 281–294. https://doi.org/10.1016/j.jappgeo.2004.08.003.

    Article  Google Scholar 

  • Badgleys, B. D., Thomas, F. I. M., & Harwood, V. J. (2011). Quantifying environmental reservoirs of fecal indicator bacteria associated with sediment and submerged aquatic vegetation. Environmental Microbiology, 13, 932–942. https://doi.org/10.1111/j.1462-2920.2010.02397.x.

    Article  CAS  Google Scholar 

  • Bonadonna, L., Briancesco, R., Ottaviani, M., & Veschetti, E. (2002). Occurrence of Cryptosporidium oocysts in sewage effluents and correlation with microbial, chemical and physical water variables. Environmental Monitoring and Assessment, 75, 241–252. https://doi.org/10.1023/A:1014852201424.

    Article  CAS  Google Scholar 

  • Borchardt, M. A., Bradbury, K. R., Alexander, E. C., et al. (2011). Norovirus outbreak caused by a new septic system in a dolomite aquifer. Ground Water, 49, 85–97. https://doi.org/10.1111/j.1745-6584.2010.00686.x.

    Article  CAS  Google Scholar 

  • Bradshaw, J. K., Snyder, B. J., Oladeinde, A., Spidle, D., Berrang, M. E., Meinersmann, R. J., Oakley, B., Sidle, R. C., Sullivan, K., & Molina, M. (2016). Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use watershed. Water Research, 101, 498–509. https://doi.org/10.1016/j.watres.2016.05.014.

    Article  CAS  Google Scholar 

  • Bragina, L., Sherlock, O., van Rossum, A. J., & Jennings, E. (2017). Cattle exclusion using fencing reduces Escherichia coli (E. Coli) level in stream sediment reservoirs in Northeast Ireland. Agriculture, Ecosystems and Environment, 239, 349–358. https://doi.org/10.1016/j.agee.2017.01.021.

    Article  Google Scholar 

  • Byappanahalli, M. N., Shively, D. A., Nevers, M. B., Sadowsky, M. J., & Whitman, R. L. (2003). Growth and survival of Escherichia coli and enterococci populations in the macro-alga Cladophora (Chlorophyta). FEMS Microbiology Ecology, 46, 203–211. https://doi.org/10.1016/S0168-6496(03)00214-9.

    Article  CAS  Google Scholar 

  • Cameira, M. R., Tedesco, S., & Leitão, T. E. (2014). Water and nitrogen budgets under different production systems in Lisbon urban farming. Biosystems Engineering, 125, 65–79. https://doi.org/10.1016/j.biosystemseng.2014.06.020.

    Article  Google Scholar 

  • Clark, C. G., Price, L., Ahmed, R., Woodward, D. L., Melito, P. L., Rodgers, F. G., Jamieson, F., Ciebin, B., Li, A., & Ellis, A. (2003). Characterization of waterborne outbreak—associated Walkerton, Ontario. Emerging Infectious Diseases, 9, 1232–1241.

    Article  Google Scholar 

  • Craun, G. F., Brunkard, J. M., Yoder, J. S., Roberts, V. A., Carpenter, J., Wade, T., Calderon, R. L., Roberts, J. M., Beach, M. J., & Roy, S. L. (2010). Causes of outbreaks associated with drinking water in the United States from 1971 to 2006. Clinical Microbiology Reviews, 23, 507–528. https://doi.org/10.1128/CMR.00077-09.

    Article  CAS  Google Scholar 

  • De Giglio, O., Barbuti, G., Trerotoli, P., et al. (2016). Microbiological and hydrogeological assessment of groundwater in southern Italy. Environmental Monitoring and Assessment, 188, 638. https://doi.org/10.1007/s10661-016-5655-y.

    Article  CAS  Google Scholar 

  • De Giglio, O., Quaranta, A., Barbuti, G., et al. (2015). Factors influencing groundwater quality: towards an integrated management approach. Annali di igiene: medicina preventiva e di comunità, 27, 52–57. https://doi.org/10.7416/ai.2015.2022.

    Article  Google Scholar 

  • Eifan, S. A. (2013). Enteric viruses and aquatic environment. The Internet Journal of Microbiology, 12, 1–7.

    Google Scholar 

  • Engström, E., Balfors, B., Mörtberg, U., Thunvik, R., Gaily, T., & Mangold, M. (2015). Prevalence of microbiological contaminants in groundwater sources and risk factor assessment in Juba, South Sudan. The Science of the Total Environment, 515–516, 181–187. https://doi.org/10.1016/j.scitotenv.2015.02.023.

    Article  CAS  Google Scholar 

  • Fujioka, R. S., Solo-Gabriele, H. M., Byappanahalli, M. N., & Kirs, M. (2015). U.S. recreational water quality criteria: A vision for the future. International Journal of Environmental Research and Public Health, 12, 7752–7776. https://doi.org/10.3390/ijerph120707752.

    Article  CAS  Google Scholar 

  • Garrote, L. (2017). Managing water resources to adapt to climate change: facing uncertainty and scarcity in a changing context. Water Resources Management, 31, 2951–2963. https://doi.org/10.1007/s11269-017-1714-6.

    Article  Google Scholar 

  • Giammanco, G. M., Di Bartolo, I., Purpari, G., et al. (2014). Investigation and control of a norovirus outbreak of probable waterborne transmission through a municipal groundwater system. Journal of Water and Health, 12, 452–464. https://doi.org/10.2166/wh.2014.227.

    Article  Google Scholar 

  • Harwood, V. J., Butler, J., Parrish, D., & Wagner, V. (1999). Isolation of fecal coliform bacteria from the diamondback terrapin (Malaclemys terrapin centrata). Applied and Environmental Microbiology, 65, 865–867.

    CAS  Google Scholar 

  • Harwood, V. J., Levine, A. D., Scott, T. M., Chivukula, V., Lukasik, J., Farrah, S. R., & Rose, J. B. (2005). Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and public health protection. Applied and Environmental Microbiology, 71, 3163–3170. https://doi.org/10.1128/AEM.71.6.3163.

    Article  CAS  Google Scholar 

  • Harwood, V. J., Staley, C., Badgley, B. D., Borges, K., & Korajkic, A. (2014). Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiology Reviews, 38, 1–40. https://doi.org/10.1111/1574-6976.12031.

    Article  CAS  Google Scholar 

  • He, X., Wei, Y., Cheng, L., Zhang, D., & Wang, Z. (2012). Molecular detection of three gastroenteritis viruses in urban surface waters in Beijing and correlation with levels of fecal indicator bacteria. Environmental Monitoring and Assessment, 184, 5563–5570. https://doi.org/10.1007/s10661-011-2362-6.

    Article  CAS  Google Scholar 

  • Idoko, O. M. (2010). Seasonal variation in iron in rural groundwater of Benue state, middle belt, Nigeria. Pakistan Journal of Nutrition, 9, 892–895. https://doi.org/10.5539/jsd.v5n2p2.

    Article  CAS  Google Scholar 

  • Jeng, H., England, A., & Bradford, H. (2005). Indicator organisms associated with stormwater suspended particles and estuarine sediment. Journal of Environmental Science and Health, Part A, 40, 779–791. https://doi.org/10.1081/ESE-200048264.

    Article  CAS  Google Scholar 

  • Jesus MR (1995) Contaminação em Aquíferos Carbonatados na Região de Lisboa-Sintra-Cascais. Faculdade de Ciências, Universidade de Lisboa.

  • Jurzik, L., Hamza, I. A., Puchert, W., Überla, K., & Wilhelm, M. (2010). Chemical and microbiological parameters as possible indicators for human enteric viruses in surface water. International Journal of Hygiene and Environmental Health, 213, 210–216. https://doi.org/10.1016/j.ijheh.2010.05.005.

    Article  CAS  Google Scholar 

  • Lapworth, D. J., Nkhuwa, D. C. W., Okotto-Okotto, J., Pedley, S., Stuart, M. E., Tijani, M. N., & Wright, J. (2017). Urban groundwater quality in sub-Saharan Africa: current status and implications for water security and public health. Hydrogeology Journal, 25, 1093–1116. https://doi.org/10.1007/s10040-016-1516-6.

    Article  Google Scholar 

  • Leclerc, H., Schwartzbrod, L., & Dei-Cas, E. (2002). Microbial agents associated with waterborne diseases. Critical Reviews in Microbiology, 28, 371–409. https://doi.org/10.1080/1040-840291046768.

    Article  CAS  Google Scholar 

  • Lemarchand, K., & Lebaron, P. (2003). Occurrence of Salmonella spp. and Cryptosporidium spp. in a French coastal watershed: relationship with fecal indicators. FEMS Microbiology Letters, 218, 203–209. https://doi.org/10.1016/S0378-1097(02)01135-7.

    Article  CAS  Google Scholar 

  • Liang, L., Goh, S. G., Vergara, G. G. R. V., Fang, H. M., Rezaeinejad, S., Chang, S. Y., Bayen, S., Lee, W. A., Sobsey, M. D., Rose, J. B., & Gin, K. Y. H. (2015). Alternative fecal indicators and their empirical relationships with enteric viruses, Salmonella enterica, and Pseudomonas aeruginosa in surface waters of a tropical urban catchment. Applied and Environmental Microbiology, 81, 850–860. https://doi.org/10.1128/AEM.02670-14.

    Article  CAS  Google Scholar 

  • Licence, K., Oates, K. R., Synge, B. A., & Reid, T. M. (2001). An outbreak of E. coli O157 infection with evidence of spread from animals to man through contamination of a private water supply. Epidemiology and Infection, 126, 135–138.

    CAS  Google Scholar 

  • Lisboa E-Nova (2004) Matriz da Água de Lisboa 2004. 44.

  • Lloyd, J. W., & Heathcote, J. A. (1985). Natural inorganic hydrochemistry in relation to groundwater: an introduction. New York: Oxford Uni.

    Google Scholar 

  • LNEG-INETI (2005) Carta Geológica de Portugal escala 1:50k. 34D.

  • Makwe, E., & Chup, C. D. (2013). Seasonal variation in physico-chemical properties of groundwater around Karu abattoir. Ethiopian Journal of Environmental Studies and Management, 6, 489–497.

    Google Scholar 

  • Marrero-Diaz, R., Costa, A., Duarte, L., Rosa C (2013) Principales características y limitaciones del acuífero Cretácico Inferior en la región de Lisboa para su potencial uso como recurso geotérmico de baja entalpía. In: AIH-GE (ed) Congreso Aspectos Tecnológicos e Hidrogeológicos de la Geotermia. Barcelona, pp 157–163.

  • Marrero-Diaz, R., & Ramalho, E. C. (2015). Geochemical characteristics of the ancient Alfama thermomineral springs (Lisbon, Portugal): preliminary study of their geothermal and hydromineral potential. Computers and Geology, 102, 129–132.

    Google Scholar 

  • McMichael, A. J., & Lindgren, E. (2011). Climate change: Present and future risks to health, and necessary responses. Journal of Internal Medicine, 270, 401–413. https://doi.org/10.1111/j.1365-2796.2011.02415.x.

    Article  CAS  Google Scholar 

  • Mendonça, J. J. L. (2013) AS ÁGUAS SUBTERRÂNEAS E O ABASTECIMENTO DE ÁGUA A LISBOA NO SÉCULO XX. In: 9o Seminário sobre Águas Subterrâneas. Almada.

  • Murphy, H. M., Prioleau, M. D., Borchardt, M. A., & Hynds, P. D. (2017). Review: epidemiological evidence of groundwater contribution to global enteric disease, 1948–2015. Hydrogeology Journal, 25, 981–1001. https://doi.org/10.1007/s10040-017-1543-y.

    Article  Google Scholar 

  • Novak Babič, M., Zalar, P., Ženko, B., Džeroski, S., & Gunde-Cimerman, N. (2016). Yeasts and yeast-like fungi in tap water and groundwater, and their transmission to household appliances. Fungal Ecology, 20, 30–39. https://doi.org/10.1016/j.funeco.2015.10.001.

    Article  Google Scholar 

  • O’Dwyer, J., Dowling, A., & Adley, C. C. (2014). Microbiological assessment of private groundwater-derived potable water supplies in the Mid-West Region of Ireland. Journal of Water and Health, 12, 310–317. https://doi.org/10.2166/wh.2014.178.

    Article  Google Scholar 

  • O’Reilly, C. E., Bowen, A. B., Perez, N. E., et al. (2007). A waterborne outbreak of gastroenteritis with multiple etiologies among resort island visitors and residents: Ohio, 2004. Clinical Infectious Diseases, 44, 506–512. https://doi.org/10.1086/511043.

    Article  Google Scholar 

  • Olsen, S. J., Miller, G., Breuer, T., Kennedy, M., Higgins, C., Walford, J., McKee, G., Fox, K., Bibb, W., & Mead, P. (2002). A waterborne outbreak of Escherichia coli O157:H7 infections and hemolytic uremic syndrome: Implications for rural water systems. Emerging Infectious Diseases, 8, 370–375. https://doi.org/10.3201/eid0804.000218.

    Article  Google Scholar 

  • Pachepsky, Y., Shelton, D., Dorner, S., & Whelan, G. (2014). Can E. coli or thermotolerant coliform concentrations predict pathogen presence or prevalence in irrigation waters? Critical Reviews in Microbiology, 7828, 1–10. https://doi.org/10.3109/1040841X.2014.954524.

    Article  Google Scholar 

  • Pais, J., Moniz, C., Cabral, J., et al. (2006) Carta Geológica de Portugal na escala 1: 50.000. Notícia Explicativa da Folha 34-D (Lisboa). Lisboa.

  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4, 439–473. https://doi.org/10.5194/hessd-4-439-2007.

    Article  Google Scholar 

  • Pinto, C. (2003) Estudo dos recursos Hídricos Subterrâneos do Concelho de Lisboa–Zona Ocidental. Lisboa.

  • Ribeiro, LFT, de Melo, M. T. E. C., Miguéns, F. (2017) ESTUDO DO DESCRITOR HIDROGEOLOGIA PARA A CONSTRUÇÃO DOS TUNEIS MONSANTO/SANTA APOLÓNIA E CHELAS/BEATO, NO ÂMBITO DO PLANO GERAL DE DRENAGEM DE LISBOA.

  • Romão, D., Abreu, R., Calado, G., et al (2011) Madeira 2010—aftermath of flashfloods and mudslides on bathing water quality indicators and on sand microbial levels. 2011. https://doi.org/10.4161/21505594.2014.975022.(2).

  • Saraiva, T., Schmidt, L., Pato, J. (2014) Lisbon water regimes: politics, environment, technology and capital (1850–2010). Flux 97–99. https://doi.org/10.3917/flux.097.0060.

    Article  Google Scholar 

  • Schmoll, O., Howard, G., Chilton, J., & Chorus, I. (2006). Protecting groundwater for health: managing the quality of drinking water sources. London: WHO/IWA. 

  • Solo-Gabriele, H. M., Wolfert, M. A., Desmarais, T. R., & Palmer, C. J. (2000). Sources of Escherichia coli in a coastal subtropical environment. Applied and Environmental Microbiology, 66, 230–237. https://doi.org/10.1128/AEM.66.1.230-237.2000.

    Article  CAS  Google Scholar 

  • Thomas, K. M., Charron, D. F., Waltner-Toews, D., Schuster, C., Maarouf, A. R., & Holt, J. D. (2006). A role of high impact weather events in waterborne disease outbreaks in Canada, 1975–2001. International Journal of Environmental Health Research, 16, 167–180. https://doi.org/10.1080/09603120600641326.

    Article  Google Scholar 

  • Tornevi, A., Bergstedt, O., & Forsberg, B. (2014). Precipitation effects on microbial pollution in a river: Lag structures and seasonal effect modification. PLoS One, 9, e98546. https://doi.org/10.1371/journal.pone.0098546.

    Article  CAS  Google Scholar 

  • Tyagi, V., & Chopra, A. (2006). Alternative microbial indicators of faecal pollution: current perspective. Iran Journal of Environmental Health Science and Engineering, 3, 205–216.

    CAS  Google Scholar 

  • Wallender, E. K., Ailes, E. C., Yoder, J. S., et al. (2014). Contributing factors to disease outbreaks associated with untreated groundwater. Ground Water, 52, 886–897. https://doi.org/10.1111/gwat.12121.

    Article  CAS  Google Scholar 

  • WHO (2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva.

Download references

Acknowledgements

The authors would like to thank all the technicians at the Bromatology and Water Laboratory (CML) who participated in field and laboratorial work in the making of the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Teixeira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, P., Almeida, L., Brandão, J. et al. Non-potable use of Lisbon underground water: microbiological and hydrochemical data from a 4-year case study. Environ Monit Assess 190, 455 (2018). https://doi.org/10.1007/s10661-018-6828-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6828-7

Keywords

Navigation