Advertisement

Organochlorine contaminants in the Vistula Lagoon sedimentation zone as possible source of lagoon recontamination

  • Andrzej R. ReindlEmail author
  • Jerzy Bolałek
Article
  • 107 Downloads

Abstract

The presented results include decade of monitoring of the Vistula Lagoon waters and have been supplemented by the determination of chlorinated compounds, as well as on concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the sedimentation zone. Monitoring of river waters entering the Polish part of the lagoon and the lagoon waters confirmed the presence of plant protection chemical; the largest contributors has lindane (34%) and DDTtotal (21%); the same as for sediments were dominate lindane (19%) and DDTtotal (14%) within pp-DDT isomer dominate (13%). In the lagoon water, PCDD/Fs were determined within a range of 1.5–5.6 ng dm−3, leading to average toxicity of 0.18 ± 0.13 ng TEQ·dm−3. In sediments, their concentrations fell within a range of 22.7–405.7 ng kg−1 dw and the average toxicity of the lagoon sediments was set at 5.00 ± 1.98 ng TEQ·kg−1 dw. Both in water and sediments, the greatest share among PCDD/Fs has octa-chlorodibenzodioxin. Due to the hydromorphological conditions of the lagoon, the waters are mixed to the bottom causing the surface layer of sediment to become remobilized—this is suggested as the key factor when it comes to water recontamination and increased access of POPs to marine organisms.

Keywords

Chlorinated pesticides PCDD/Fs Near bottom water Surface sediment Vistula Lagoon Southern Baltic Sea 

Supplementary material

10661_2018_6804_MOESM1_ESM.doc (252 kb)
ESM 1 (DOC 251 kb)
10661_2018_6804_MOESM2_ESM.doc (260 kb)
ESM 2 (DOC 260 kb)
10661_2018_6804_MOESM3_ESM.doc (64 kb)
ESM 3 (DOC 64.5 kb)
10661_2018_6804_MOESM4_ESM.doc (76 kb)
ESM 4 (DOC 75.5 kb)
10661_2018_6804_MOESM5_ESM.doc (73 kb)
ESM 5 (DOC 73 kb)
10661_2018_6804_MOESM6_ESM.doc (80 kb)
ESM 6 (DOC 79.5 kb)
10661_2018_6804_MOESM7_ESM.doc (78 kb)
ESM 7 (DOC 77.5 kb)

References

  1. Durante, C. A., Santos-Neto, E. B., Azevedo, A., Crespo, E. A., & Lailson-Brito, J. (2016). POPs in the South Latin America: Bioaccumulation of DDT, PCB, HCB, HCH and Mirex in blubber of common dolphin (Delphinus delphis) and Fraser’s dolphin (Lagenodelphis hosei) from Argentina. Science of the Total Environment, 572, 352–360.  https://doi.org/10.1016/j.scitotenv.2016.07.176.CrossRefGoogle Scholar
  2. Elmquist, M., Gustafsson, Ö., & Andersson, P. (2004). Quantification of sedimentary black carbon using the chemothermal oxidation method: an evaluation of ex situ pretreatments and standard additions approaches. Limnology and Oceanography: Methods, 2(12), 417–427.Google Scholar
  3. Gerber, R., Smit, N. J., Van Vuren, J. H., Nakayama, S. M., Yohannes, Y. B., Ikenaka, Y., Ishizuka, M., & Wepener, V. (2016). Bioaccumulation and human health risk assessment of DDT and other organochlorine pesticides in an apex aquatic predator from a premier conservation area. Science of the Total Environment, 550, 522–533.  https://doi.org/10.1016/j.scitotenv.2016.01.129.CrossRefGoogle Scholar
  4. Kosior, M., Barska, I., & Domagala-Wieloszewska, M. (2002). Heavy metals, sigma DDT and sigma PCB in the gonads of pikeperch females spawning in southern Baltic Sea lagoons. Polish Journal of Environmental Studies, 11(2), 127–134.Google Scholar
  5. Lassen, C., Hansen, E., Jensen, A. A., Olendrzyński, K., Kolsut, W., Żurek, J., Kargulewicz, I., Debski, B., Skośkiewicz, J., Holtzer, M., Grochowalski, A., Brante, E., Poltimae, H., Kallaste, T., & Kapturauskas, J. (2003). Survey of dioxin sources in the Baltic Region (extended summary). Environmental Science and Pollution Research International, 10(1), 49–56.CrossRefGoogle Scholar
  6. Lee, S. Y., Dunn, R. J. K., Young, R. A., Connolly, R. M., Dale, P. E. R., Dehayr, R., & Welsh, D. T. (2006). Impact of urbanization on coastal wetland structure and function. Austral Ecology, 31(2), 149–163.Google Scholar
  7. Nieczaj IJ, Silicz MW, Jabłońska T (1975) Hydrografia zlewiska zalewu. In: Łazarienko NN, Majewski A (ed) Hydrometeorologiczny ustrój Zalewu Wiślanego. IMGW, Wydawnictwa Komunikacji i Łączności, Warszawa, pp 21–28.Google Scholar
  8. Onuska, F. I., & Terry, K. A. (1993). Extraction of pesticides from sediments using a microwave technique. Chromatographia, 36(1), 191–194.CrossRefGoogle Scholar
  9. Pegoraro, C. N., Harner, T., Su, K., & Chiappero, M. S. (2016). Assessing levels of POPs in air over the South Atlantic Ocean off the coast of South America. Science of the Total Environment, 571, 172–177.  https://doi.org/10.1016/j.scitotenv.2016.07.149.CrossRefGoogle Scholar
  10. Rappe, C. (1994). Dioxin, patterns and source identification. Fresenius' Journal of Analytical Chemistry, 348(1), 63–75.  https://doi.org/10.1007/BF00321606.CrossRefGoogle Scholar
  11. Reindl, A., Falkowska, L., Szumiło, E., & Staniszewska, M. (2013). Residue of chlorinated pesticides in fish caught in the Southern Baltic. Oceanol Hydrobiol, 42(3), 251–259.  https://doi.org/10.2478/s13545-013-0081-z.CrossRefGoogle Scholar
  12. Sapota, G. (2006). Persistent organic pollutants (POPs) in bottom sediments from the Baltic Sea. Oceanol Hydrobiol, 35(4), 295–306.Google Scholar
  13. Staniszewska, M., Boniecka, H., & Gajecka, A. (2013). Organochlorine, organophosphoric and organotin contaminants, aromatic and aliphatic hydrocarbons and heavy metals in sediments of the ports from the Polish part of the Vistula Lagoon (Baltic Sea). Soil and Sediment Contamination: An International Journal, 22(2), 151–173.  https://doi.org/10.1080/15320383.2013.722137.CrossRefGoogle Scholar
  14. Sun, J., Pan, L., Zhan, Y., Lu, H., Tsang, D. C., Liu, W., Wang, X., Li, X., & Zhu, L. (2016). Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China. Science of the Total Environment, 544, 670–676.  https://doi.org/10.1016/j.scitotenv.2015.12.012.CrossRefGoogle Scholar
  15. Sundqvist, K. L., Tysklind, M., Geladi, P., Cato, I., & Wiberg, K. (2009). Congener fingerprints of tetra-through octa-chlorinated dibenzo-p-dioxins and dibenzofurans in Baltic surface sediments and their relations to potential sources. Chemosphere, 77(5), 612–620.  https://doi.org/10.1016/j.chemosphere.2009.08.057.CrossRefGoogle Scholar
  16. Szlinder-Richert, J., Usydus, Z., & Drgas, A. (2012). Persistent organic pollutants in sediment from the southern Baltic: risk assessment. Journal of Environmental Monitoring, 14(8), 2100–2107.  https://doi.org/10.1039/c2em30221g.CrossRefGoogle Scholar
  17. Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., & Peterson, R. E. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences, 93(2), 223–241.  https://doi.org/10.1093/toxsci/kfl055.CrossRefGoogle Scholar
  18. Verta, M., Salo, S., Korhonen, M., Assmuth, T., Kiviranta, H., Koistinen, J., Ruokojärvi, P., Isosaari, P., Bergqvist, P. A., Tysklind, M., Cato, I., Vikelsøe, J., & Larsen, M. M. (2007). Dioxin concentrations in sediments of the Baltic Sea—a survey of existing data. Chemosphere, 67(9), 1762–1775.  https://doi.org/10.1016/j.chemosphere.2006.05.125.CrossRefGoogle Scholar
  19. Wypych K, Nieczaj IJ, Sołowiew II, Jaworska M (1975) Ukształtowanie dna i osady denne zalewu. In Łazarienko NN, Majewski A (ed), Hydrometeorologiczny ustrój Zalewu Wiślanego. IMGW, Wydawnictwa Komunikacji i Łączności, Warszawa, pp. 41–57.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Marine Chemistry and Environmental Protection, Faculty of Oceanography and GeographyUniversity of GdanskGdyniaPoland

Personalised recommendations