An assessment of anthropogenic and climatic stressors on estuaries using a spatio-temporal GIS-modelling approach for sustainability: Towamba estuary, southeastern Australia

  • Ali K. M. Al-NasrawiEmail author
  • Sarah M. Hamylton
  • Brian G. Jones


Monitoring estuarine ecological-geomorphological dynamics has become a crucial aspect of studying the impacts of climate change and worldwide infrastructure development in coastal zones. Together, these factors have changed the natural eco-geomorphic processes that affect estuarine regimes and comprehensive modelling of coastal resources can assist managers to make appropriate decisions about their sustainable use. This study has utilised Towamba estuary (southeastern NSW, Australia), to demonstrate the value and priority of modelling estuarine dynamism as a measure of the rates and consequences of eco-geomorphic changes. This research employs several geoinformatic modelling approaches over time to investigate and assess how climate change and human activities have altered this estuarine eco-geomorphic setting. Multitemporal trend/change analysis of sediment delivery, shoreline positions and land cover, determined from fieldwork and GIS analysis of remote sensing datasets, shows significant spatio-temporal changes to the elevation and areal extent of sedimentary facies in the Towamba estuary over the past 65 years. Geomorphic growth (~ 2600 m2 annually) has stabilised the estuarine habitats, particularly within native vegetation, salt marsh and mangrove areas. Geomorphic changes have occurred because of a combination of sediment runoff from the mostly unmodified terrestrial catchment, nearshore processes (ocean dynamics) and human activities. The construction of GIS models, verified with water and sediment samples, can characterise physical processes and quantify changes within the estuarine ecosystem. Such robust models will allow resource managers to evaluate the potential effects of changes to the current coastal ecosystems.


Geoinformatics Global warming Eco-geomorphology monitoring Sediment sampling Coastal management 



Comments and support from Collin Murray-Wallace and Craig Sloss that improved an early version of this manuscript were highly appreciated.

Funding information

The GeoQuEST Research Centre, University of Wollongong, and HCED-Iraq scholarship program, Baghdad, Iraq are thanked for financing and supporting this research as part of a PhD project undertaken by the first author.


  1. Aarts, B. G. W., & Nienhuis, P. H. (1999). Ecological sustainability and biodiversity. International Journal of Sustainable Development and World Ecology, 6, 89–102.CrossRefGoogle Scholar
  2. ABS (Australian Bureau of Statistics) (2017). Available online: Accessed 17 Nov 2017.
  3. Akumu, C. E., Pathirana, S., Baban, S., & Bucher, D., (2010). Monitoring coastal wetland communities in north-eastern NSW using ASTER and Landsat satellite data. Wetlands Ecology and Management, 18(3), 357–365.CrossRefGoogle Scholar
  4. Al-Nasrawi, A. K. M., Hamylton, S. M., Jones, B. G., & Kadhim, A. A. (2018). Geoinformatic analysis of vegetation and climate change on intertidal sedimentary landforms in southeastern Australian estuaries from 1975–2015. AIMS Geosciences, 4(1), 36–65. Scholar
  5. Al-Nasrawi, A. K. M., Hamylton, S. M., Jones B. G., Hopley C. A., & Al Yazichi Y. M. (2018b). Geoinformatics vulnerability predictions of coastal ecosystems to sea-level rise in southeastern Australia. Geomatics, Natural Hazards and Risk, 9(1), 645–661. Scholar
  6. Al-Nasrawi, A. K. M., Hopley, C. A., Hamylton, S. M., & Jones, B. G. (2017). A spatio-temporal assessment of landcover and coastal changes at Wandandian delta system, southeastern Australia. Journal of Marine Science and Engineering, 5, 55. Scholar
  7. Al-Nasrawi, A. K. M., Jones, B. G., Alyazichi, Y. M., Hamylton, S. M., Jameel, M. T., & Hammadi, A. F. (2016a). Civil-GIS incorporated approach for water resource management in a developed catchment for urban-geomorphic sustainability: Tallowa Dam, southeastern Australia. International Soil and Water Conservation Research, 4, 303–313. Scholar
  8. Al-Nasrawi, A. K., Jones, B. G., & Hamylton, S. M. (2016b). GIS-based modelling of vulnerability of coastal wetland ecosystems to environmental changes: Comerong Island, southeastern Australia. Journal of Coastal Research, 75, 33–37. Scholar
  9. ALUM (Australian Land Use and Management) (2010). Classification Version 7 (Geo-datasets). Canberra: Geoscience Australia.Google Scholar
  10. Alyazichi, Y. M., Jones, B. G., McLean, E., Joel Pease, J., & Heidi Brown, H. (2017). Geochemical assessment of trace element pollution in surface sediments from the Georges River, southern Sydney, Australia. Archives of Environmental Contamination and Toxicology, 72, 247–259.CrossRefGoogle Scholar
  11. Ball, G. L. (1994). Ecosystem modeling with GIS. Environmental Management, 18, 345–349.CrossRefGoogle Scholar
  12. Batzer, D. P., & Sharitz, R. R. (2014). Ecology of freshwater and estuarine wetlands. Los Angeles: University of California Press.Google Scholar
  13. Bianchi, T. S., & Allison, M. A. (2009). Large-river delta-front estuaries as natural “recorders” of global environmental change. Proceedings of the National Academy of Sciences, 106, 8085–8092.CrossRefGoogle Scholar
  14. Birch, G. F., Evenden, D., & Teutsch, M. E. (1996). Dominance of point source in heavy metal distributions in sediments of a major Sydney estuary (Australia). Environmental Geology, 28, 169–174.CrossRefGoogle Scholar
  15. Blay, J. (1944). On track: searching out the Bundian way, Eden local history reference collection. Sydney: NewSouth Publishing.Google Scholar
  16. Blott, S. J. (2010). A package of grain size distribution and statistics for the analysis of unconsolidated sediments by sieving or Laser Granulometer-GRADISTAT V.8.0.Google Scholar
  17. BOM (2017). NSW weather [online]. Australian Government, Bureau of Meteorology. Available:
  18. Bouvet, M. (2004). The Holocene evolution of Swan Lake. BSc (Hons) thesis, University of Wollongong, Australia.Google Scholar
  19. Carter, V. (1999). Technical aspects of wetlands (wetland hydrology, water quality, and associated functions) [online]. Available:
  20. Chenhall, B. E., Jones, B. G. & Depers, A. M. (2001). Trace metal pollution and sedimentation in coastal lagoons: an example from Lake Illawarra, New South Wales, Australia. In V.A. Gostin (ed.), Gondwana to greenhouse: Australian environmental geoscience, (Vol. 21, pp. 227–233). Geological Society of Australia Special Publication.Google Scholar
  21. Chenhall, B. E., Jones, B. G., Sloss, C. R., O’Donnell, M., Payne, M., Murrie, M., Garnett, D., & Waldron, H. (2004). Trace metals in sediments from Lake Illawarra, New South Wales, Australia. Wetlands (Australia), 21, 198–208.Google Scholar
  22. Chenhall, B. E., Yassini, I., Depers, A. M., Caitcheon, G., Jones, B. G., Batley, G. E., & Ohmsen, G. S. (1995). Anthropogenic marker evidence for accelerated sedimentation in Lake Illawarra, New South Wales, Australia. Environmental Geology, 26, 124–135.CrossRefGoogle Scholar
  23. Cherfas, J. (1990). The fringe of the ocean—under siege from land: the ecology of the ocean margins, crucial to human life, is being disrupted by our activities—and perhaps by global change. Science, 248, 163–165.CrossRefGoogle Scholar
  24. Coleman, J.M., & Wright, L., (1975). Modern river deltas: Variability of processes and sand bodies. In M.L. Broussard (Ed.), Deltas, Models for Exploration (pp. 99–149). Houston: Houston Geological Society.Google Scholar
  25. Cronk, J. K., & Fennessy, M. S. (2001). Wetland plants: biology and ecology. Boca Raton, Florida: Lewis Publishers.CrossRefGoogle Scholar
  26. Dean, L., & De Deckker, P. (2013). Recent benthic foraminifera from Twofold Bay, Eden NSW: community structure, biotopes and distribution controls. Australian Journal of Earth Sciences, 60, 475–496.CrossRefGoogle Scholar
  27. DPI/OW (2017). Towamba catchment [online]. Department of Primary Industries / Office of Water. Available:
  28. DSE (2007). Index of wetland condition: (review of wetland assessment methods). Melbourne: Department of Sustainability and Environment, Victorian Government.Google Scholar
  29. FAO (2003). Status and trends in mangrove area extent worldwide. In M. L. Wilkie & S. Fortuna (Eds.), Forest Resources Assessment Working Paper (p. 63). Rome: Forest Resources Division. FAO.Google Scholar
  30. Ganju, N. K., & Schoellhamer, D. H. (2010). Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply. Estuaries and Coasts, 33, 15–29.CrossRefGoogle Scholar
  31. Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20, 154–159.CrossRefGoogle Scholar
  32. Haslett, S. K., Davies-Burrows, R., Panayotou, K., Jones, B. G., & Woodroffe, C. D. (2010). Holocene evolution of the Minnamurra River estuary, southeast Australia: foraminiferal evidence. Zeitschrift für Geomorphologie, 54(Suppl. 3), 79–98.CrossRefGoogle Scholar
  33. Herben, R., Khoury, M., Rolfe, D., Wilkie, S., Wynn, K., & Collins, R. (2012). Interpreting estuary health data, EstuaryWatch Victoria. Melbourne: Corangamite Catchment Management Authority.Google Scholar
  34. Hopley, C. A. (2004). The Holocene and beyond: evolution of Wandandian Creek delta, St Georges Basin. BSc (Hons) thesis, University of Wollongong, Australia.Google Scholar
  35. Hopley, C. A. (2013). Autocyclic, allocyclic and anthropogenic impacts on Holocene delta evolution and future management implications: Macquarie Rivulet and Mullet/Hooka Creek, Lake Illawarra, New South Wales. PhD thesis, University of Wollongong, Australia.Google Scholar
  36. Hopley, C. A., & Jones, B. G. (2006). Holocene stratigraphic and morphological evolution of the Wandandian Creek delta, St Georges Basin, New South Wales. Australian Journal of Earth Sciences, 53, 991–1000.CrossRefGoogle Scholar
  37. Hopley, C. A., Jones, B. G., & Puotinen, M. L. (2007). Assessing the recent (1834–2002) morphological evolution of a rapidly prograding delta within a GIS framework: Macquarie Rivulet delta, Lake Illawarra, New South Wales. Australian Journal of Earth Sciences, 54, 1047–1056.CrossRefGoogle Scholar
  38. Hudson, J. P. (1991). Late Quaternary evolution of Twofold Bay, southern New South Wales. MSc. thesis, University of Sydney (unpublished).Google Scholar
  39. Hughes, M. L., McDowell, P. F., & Marcus, W. A. (2006). Accuracy assessment of georectified aerial photographs: implications for measuring lateral channel movement in a GIS. Geomorphology, 74, 1–16.CrossRefGoogle Scholar
  40. Ian, H. (2013). Coast: a history of the New South Wales edge. Sydney: University of New South Wales Press.Google Scholar
  41. IPCC (2014) Climate change 2014: synthesis report. In R. K., Pachauri & L. A., Meyer (Eds.), Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team,] (pp. 151). Geneva: IPCC.Google Scholar
  42. Jones, B. G., Chenhall, B. E., Debretsion, F., & Hutton, A. C. (2003a). Geochemical comparisons between estuaries with non-industrialised and industrialised catchments: the Huon and Derwent River estuaries, Tasmania. Australian Journal of Earth Sciences, 50, 653–667.CrossRefGoogle Scholar
  43. Jones, B. G., Killian, H. E., Chenhall, B. E., & Sloss, C. R. (2003b). Anthropogenic effects in a coastal lagoon: geochemical characterisation of Burrill Lake, NSW, Australia. Journal of Coastal Research, 19, 621–632.Google Scholar
  44. Jones, H., & Byrne, M. (2014). Changes in the distributions of freshwater mussels (Unionoida: Hyriidae) in coastal south-eastern Australia and implications for their conservation status. Aquatic Conservation, 24, 203–217.CrossRefGoogle Scholar
  45. Krumbein, W., & Pettijohn, F. (1938). Manual of sedimentary petrography (p. 549). New York: Appleton-Century Co.Google Scholar
  46. Lee, S. Y., Dunn, R. J. K., Young, R. A., Connolly, R. M., Dale, P., Dehayr, R., Lemckert, C. J., Mckinnon, S., Powell, B., & Teasdale, P. (2006). Impact of urbanization on coastal wetland structure and function. Austral Ecology, 31, 149–163.CrossRefGoogle Scholar
  47. LP-DAAC (Land Processes-Distributed Active Archive Centre) (2017). DEMs data sets, NASA land data products and services; USGS [online]. Available:
  48. LPI (Land and Property Information) (1998). Historical data. Sydney: New South Wales Government.Google Scholar
  49. LPI, (NSW Land and Property Information) (2010). Standard imagery product (RCD105 imagery), version 2.0, July 2010. Sydney: Land and Property Information.Google Scholar
  50. LPI, (NSW Land and Property Information) (2014). Imagery survey. Sydney: Land and Property Information.Google Scholar
  51. Michener, W. K., Blood, E. R., Bildstein, K. L., Brinson, M. M., & Gardner, L. R. (1997). Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecological Applications, 7, 770–801.CrossRefGoogle Scholar
  52. Mkpenie, V. N., Ebong, G. & Abasiekong, B. (2007). Studies on the Effect of Temperature on the Sedimentation of Insoluble Metal Carbonates. Journal of Applied Sciences and Environmental Management, 11(4), 67–69.Google Scholar
  53. Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PLoS One, 10, e0118571.CrossRefGoogle Scholar
  54. Nicholls, R. J. (2004). Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Global Environmental Change, 14, 69–86.CrossRefGoogle Scholar
  55. Panayotou, K., Woodroffe, C. D., Jones, B. G., Chenhall, B. E., McLean, E., & Heijnis, H. (2007). Patterns and rates of sedimentary infill in the Minnamurra River estuary, south-eastern Australia. Journal of Coastal Research Special Issue, 50, 688–692.Google Scholar
  56. Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.CrossRefGoogle Scholar
  57. Pendleton, L. H. (2010). The economic and market value of coasts and estuaries: what’s at stake? (pp. 1–175). Arlington, USA: Restore America's Estuaries.Google Scholar
  58. Postgate, N. (1992). Early Mesopotamia: society and economy at the dawn of history (book review). London: Oxford University Press.Google Scholar
  59. Roy, P., Williams, R., Jones, A., Yassini, I., Gibbs, P., Coates, B., West, R., Scanes, P., Hudson, J., & Nichol, S. (2001). Structure and function of south-east Australian estuaries. Estuarine, Coastal and Shelf Science, 53, 351–384.CrossRefGoogle Scholar
  60. Saintilan, N., & Williams, R. (2010). The decline of saltmarsh in southeast Australia: results of recent surveys. Wetlands (Australia), 18, 49–54.Google Scholar
  61. Siddall, M., Rohling, E. J., Almogi-Labin, A., Hemleben, C., Meischner, D., Schmelzer, I., & Smeed, D. (2003). Sea-level fluctuations during the last glacial cycle. Nature, 423, 853–858.CrossRefGoogle Scholar
  62. Sloss, C. R., Jones, B. G., Brooke, B. P., Heijnis, H., & Murray-Wallace, C. V. (2011). Contrasting sedimentation rates in Lake Illawarra and St Georges Basin, two large barrier estuaries on the southeast coast of Australia. Journal of Paleolimnology, 46, 561–577.CrossRefGoogle Scholar
  63. Sloss, C. R., Jones, B. G., McClennen, C. E., de Carli, J., & Price, D. M. (2006). The geomorphological evolution of a wave-dominated barrier estuary: Burrill Lake, New South Wales, Australia. Sedimentary Geology, 187, 229–249.CrossRefGoogle Scholar
  64. Sloss, C. R., Jones, B. G., Murray-Wallace, C. V., & McClennen, C. E. (2005). Holocene sea level fluctuations and the sedimentary evolution of a barrier estuary: Lake Illawarra, New South Wales. Australia. Journal of Coastal Research, 21(943–959), 974–975.Google Scholar
  65. Sloss, C. R., Jones, B. G., Murray-Wallace, C. V., & Chenhall, B. E. (2004). Recent sedimentation and geomorphological changes, Lake Illawarra, NSW, Australia. Wetlands (Australia), 21, 73–83.Google Scholar
  66. Sloss, C. R., Jones, B. G., Switzer, A. D., Nichol, S., Clement, A. J. H., & Nicholas, A. W. (2010). The Holocene infill of Lake Conjola, a narrow incised valley system on the southeast coast of Australia. Quaternary International, 221, 23–35.CrossRefGoogle Scholar
  67. Sloss, C. R., Murray-Wallace, C. V., & Jones, B. G. (2007). Holocene sea-level change on the southeast coast of Australia: a review. The Holocene, 17, 999–1014.CrossRefGoogle Scholar
  68. SOC (2010). Riverine ecosystems, southern river region. State of the Catchments, New South Wales Government, Sydney.Google Scholar
  69. SpatialServices-NSDC (2017). The NSW spatial data catalogue. Sydney: New South Wales Government.Google Scholar
  70. SRTM (Shuttle Radar Topographic Mission) (2011). Geoscience Australia product (arc second DSM, DEM, DEM-S & DEM-H- Version 1.0.4). Canberra: © Commonwealth of Australia (Geoscience Australia).Google Scholar
  71. Sutherland, R. A. (1998). Loss-on-ignition estimates of organic matter and relationships to organic carbon in fluvial bed sediments. Hydrobiologia, 389, 153–167.CrossRefGoogle Scholar
  72. Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., & Ergul, A. (2009). The Digital Shoreline Analysis System (DSAS) version 4.0—an ArcGIS extension for calculating shoreline change. US Geological Survey, Open-File Report2008–1278.Google Scholar
  73. Thom, B. G., Wright, L., & Coleman, J. M. (1975). Mangrove ecology and deltaic-estuarine geomorphology: Cambridge Gulf-Ord River, Western Australia. Journal of Ecology, 63, 203–232.CrossRefGoogle Scholar
  74. Tran Thi, V., Tien Thi Xuan, A., Phan Nguyen, H., Dahdouh-Guebas, F., & Koedam, N. (2014). Application of remote sensing and GIS for detection of long-term mangrove shoreline changes in Mui Ca Mau, Vietnam. Biogeosciences, 11, 3781–3795.CrossRefGoogle Scholar
  75. Troedson, A., Hashimoto, T. R., Jaworska, J., Malloch, K., & Cain, L. (2004). Coastal Quaternary Geology (CCA 03), Comprehensive Coastal Assessment. New South Wales: Department of Planning.Google Scholar
  76. Umitsu, M., Buman, M., Kawase, K., & Woodroffe, C. D. (2001). Holocene palaeoecology and formation of the Shoalhaven River deltaic-estuarine plains, southeast Australia. The Holocene, 11, 407–418.CrossRefGoogle Scholar
  77. USGS-LANDSAT (2016). Landsat collections [online]. Available:
  78. Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., & Fekete, B. M. (2016). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications, 7, 12558.CrossRefGoogle Scholar
  79. Woodroffe, C. D., Panayotou, K., Simms, A. D., & Jones, B. G. (2004). The rate of sedimentary infill in Australian estuarine systems: examples from southern New South Wales, Australia. ECSA37 - ERF 2004 Estuaries and Change Conference, Ballina, 20-24, 290.Google Scholar
  80. Woodroffe, C. D., Buman, M., Kawase, K., & Umitsu, M. (2000). Estuarine infill and formation of deltaic plains, Shoalhaven River. Wetlands (Australia), 18(2), 72–84.Google Scholar
  81. Yassini, I., & Jones, B. G. (1995). Foraminiferida and ostracoda from estuarine and shelf environments on the southeastern coast of Australia (p. 484). Wollongong: University of Wollongong Press.Google Scholar
  82. Zhu, L., Wu, J., Xu, Y., Hu, R., & Wang, N. (2010). Recent geomorphic changes in the Liaohe estuary. Journal of Geographical Sciences, 20, 31–48.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ali K. M. Al-Nasrawi
    • 1
    • 2
    Email author
  • Sarah M. Hamylton
    • 1
  • Brian G. Jones
    • 1
  1. 1.GeoQuEST Research Centre, School of Earth and Environmental SciencesUniversity of WollongongWollongongAustralia
  2. 2.Department of GeographyUniversity of Babylon, Ministry of Higher Education and Scientific ResearchHillahIraq

Personalised recommendations