Advertisement

Impacts of ultramafic outcrops in Peninsular Malaysia and Sabah on soil and water quality

  • Mahsa Tashakor
  • Soroush Modabberi
  • Antony van der Ent
  • Guillaume Echevarria
Article

Abstract

This study focused on the influence of ultramafic terrains on soil and surface water environmental chemistry in Peninsular Malaysia and in the State of Sabah also in Malaysia. The sampling included 27 soils from four isolated outcrops at Cheroh, Bentong, Bukit Rokan, and Petasih from Peninsular Malaysia and sites near Ranau in Sabah. Water samples were also collected from rivers and subsurface waters interacting with the ultramafic bodies in these study sites. Physico-chemical parameters (including pH, EC, CEC) as well as the concentration of major and trace elements were measured in these soils and waters. Geochemical indices (geoaccumulation index, enrichment factor, and concentration factor) were calculated. Al2O3 and Fe2O3 had relatively high concentrations in the samples. A depletion in MgO, CaO, and Na2O was observed as a result of leaching in tropical climate, and in relation to weathering and pedogenesis processes. Chromium, Ni, and Co were enriched and confirmed by the significant values obtained for Igeo, EF, and CF, which correspond to the extreme levels of contamination for Cr and high to moderate levels of contamination for Ni and Co. The concentrations of Cr, Ni, and Co in surface waters did not reflect the local geochemistry and were within the permissible ranges according to WHO and INWQS standards. Subsurface waters were strongly enriched by these elements and exceeded these standards. The association between Cr and Ni was confirmed by factor analysis. The unexpected enrichment of Cu in an isolated component can be explained by localized mineralization in Sabah.

Keywords

Contamination factor Enrichment factor Geoaccumulation index Soil pollution Ultramafic soils 

Notes

Acknowledgements

This study was part of the M. Tashakor’s Ph.D. thesis, and she wishes to thank Universiti Kebangsaan Malaysia (UKM) and the staff from the School of Science and Technology for support. M. Tashakor also acknowledges Universiti Malaysia Sabah (UMS) for organizing the fieldwork for sample collection. A. van der Ent is the recipient of a Discovery Early Career Researcher Award (DE160100429) from the Australian Research Council. We thank anonymous reviewers for contructive comments that improved this article.

References

  1. Akinci, O. T. (2014). Ophiolite-hosted copper and gold deposits of southeastern Turkey: formation and relationship with seafloor hydrothermal processes. Turkish Journal of Earth Sciences, 18(4), 475–509.Google Scholar
  2. Alexander, E. B., & DuShey, J. (2011). Topographic and soil differences from peridotite to serpentinite. Geomorphology, 135(3–4), 271–276.CrossRefGoogle Scholar
  3. Alexander, E. B., Coleman, R. G., Keeler-Wolfe, T., & Harrison, S. P. (2006). Serpentine geoecology of western North America: geology, soils, and vegetation. USA: Oxford University Press 528p.Google Scholar
  4. Ashraf, M. A., Sarfraz, M., Naureen, R., & Gharibreza, M. (2015). Environmental impacts of metallic elements: speciation, bioavailability and remediation (434p). Singapore: Springer.CrossRefGoogle Scholar
  5. ASTM. (1984). Standard test method for distribution ratios by the short-term batch method. Annual book of ASTM standards (pp. 766–773). West Conshohocken: American Society for Testing and Materials.Google Scholar
  6. ATSDR. (2002). Draft toxicological profile for several trace elements. Atlanta: U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry.Google Scholar
  7. Baioumy, H., Ulfa, Y., Nawawi, M., Padmanabhan, E., & Anuar, M. N. A. (2016). Mineralogy and geochemistry of Palaeozoic black shales from Peninsular Malaysia: implications for their origin and maturation. International Journal of Coal Geology, 165, 90–105.CrossRefGoogle Scholar
  8. Becquer, T., Pétard, J., Duwig, C., Bourdon, E., Moreau, R., & Herbillon, A. J. (2001). Mineralogical, chemical and charge properties of Geric Ferralsols from New Caledonia. Geoderma, 103(3–4), 291–306.CrossRefGoogle Scholar
  9. Becquer, T., Quantin, C., Rotte-Capet, S., Ghanbaja, J., Mustin, C., & Herbillon, A. J. (2006). Sources of trace metals in Ferralsols in New Caledonia. European Journal of Soil Science, 57(2), 200–213.CrossRefGoogle Scholar
  10. Boyd, R. S., Baker, A. J. M., Proctor, J. (2004). Ultramafic rocks: their soils, vegetation and fauna. In: Proceedings of the Fourth International Conference on Serpentine Ecology, Cuba, 21–26 April, 2003. Science Reviews.Google Scholar
  11. Boyd, R. S., Kruckeberg, A. R., & Rajakaruna, N. (2009). Biology of ultramafic rocks and soils: research goals for the future. Northeastern Naturalist, 16(5), 422–440.CrossRefGoogle Scholar
  12. Brearley, F. (2005). Nutrient limitation in a Malaysian ultramafic soil. Journal of Tropical Forest Science, 17(4), 596–609.Google Scholar
  13. British Standard Institution. (1990a). Methods of test for soils for civil engineering purposes—BS 1377—part 2:9.4. Particle size analysis. London: British Standard Institution.Google Scholar
  14. British Standard Institution. (1990b). Methods of test for soils for civil engineering purposes—BS 1377—part 3: 9.0. pH analysis. London: British Standard Institution.Google Scholar
  15. Brooks, R.R. (1983). Biological methods of prospecting for minerals. New York: Wiley.Google Scholar
  16. Brooks, R. R. (1987). Serpentine and its vegetation: a multidisciplinary approach (288p). Portland: Dioscorides Press.Google Scholar
  17. Caillaud, J., Proust, D., Philippe, S., Fontaine, C., & Fialin, M. (2009). Trace metals distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals. Geoderma, 149(3–4), 199–208.CrossRefGoogle Scholar
  18. Cheng, C. H., Jien, S. H., Tsai, H., Chang, Y. H., Chen, Y. C., & Hseu, Z. Y. (2009). Geochemical element differentiation in serpentine soils from the ophiolite complexes, eastern Taiwan. Soil Science, 174(5), 283–291.CrossRefGoogle Scholar
  19. Coleman, R. G. (1977). Ore deposits in ophiolites. In R. G. Coleman (Ed.), Ophiolites, ancient oceanic lithosphere? (pp. 124–139). Heidelberg: Springer.Google Scholar
  20. Coleman, R. G., Jove, C. (1992). Geological origin of serpentinites. In: Proceedings of the First International Conference on Serpentine Ecology, Davis: Intercept Ltd., University of California.Google Scholar
  21. Cornelis, K., & Dutrow, B. (2007). Manual of mineral science. Hoboken: Wiley Interscience 675p.Google Scholar
  22. Dube, A., Zbytniewski, R., Kowalkowski, T., Cukrowska, E., & Buszewski, B. (2001). Adsorption and migration of heavy metals in soil. Polish Journal of Environmental Studies, 10(1), 1–10.Google Scholar
  23. Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Biotechnology, 12(4), 335–353.CrossRefGoogle Scholar
  24. Echevarria, G. (2018). Chapter 8: Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds). Agromining: farming for metals, mineral resource reviews. Springer International Publishing. In Press.  https://doi.org/10.1007/978-3-319-61899-9_8.
  25. Echevarria, G., Massoura, S., Sterckeman, T., Becquer, T., Schwartz, C., & Morel, J. L. (2006). Assessment and control of the bioavailability of Ni in soils. Environmental Toxicology and Chemistry, 25, 643–651.CrossRefGoogle Scholar
  26. Evans, B. W. (2008). Control of the products of serpentinization by the Fe2+ Mg−1 exchange potential of olivine and orthopyroxene. Journal of Petrology, 49(10), 1873–1887.CrossRefGoogle Scholar
  27. Franco-Uría, A., López-Mateo, C., Roca, E., & Fernández-Marcos, M. L. (2009). Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. Journal of Hazardous Materials, 165(1), 1008–1015.CrossRefGoogle Scholar
  28. Frost, B. R., & Frost, C. D. (2013). Essentials of igneous and metamorphic petrology. Cambridge: Cambridge University Press 314p.Google Scholar
  29. Ghaderian, S. M., & Baker, A. J. M. (2007). Geobotanical and biogeochemical reconnaissance of the ultramafics of Central Iran. Journal of Geochemical Exploration, 92(1), 34–42.CrossRefGoogle Scholar
  30. Gaillardet, J., Viers, J., & Dupré, B. (2003). Trace elements in river waters. Treatise on Geochemistry, 5, 225–272.CrossRefGoogle Scholar
  31. Galey, M. L., Van Der Ent, A., Iqbal, M. C. M., & Rajakaruna, N. (2017). Ultramafic geoecology of South and Southeast Asia. Botanical Studies, 58(1), 18.CrossRefGoogle Scholar
  32. Garnier, J., Quantin, C., Guimarães, E., Garg, V. K., Martins, E. S., & Becquer, T. (2009). Understanding the genesis of ultramafic soils and catena dynamics in Niquelândia, Brazil. Geoderma, 151(3–4), 204–214.CrossRefGoogle Scholar
  33. Georgopoulos, G., Mitsis, I., Argyraki, A., & Stamatakis, M. (2018). Environmental availability of ultramafic rock derived trace elements in the fumarolic-geothermal field of Soussaki area. Greece: Applied Geochemistry In press.Google Scholar
  34. Gobbett, D. J., Hutchison, C. S., & Burton, C. K. (1973). Geology of the Malay peninsula: West Malaysia and Singapore. California: Wiley-Interscience 440p.Google Scholar
  35. Godard, M., Jousselin, D., & Bodinier, J.-L. (2000). Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth and Planetary Science Letters, 180(1-2), 133–148.CrossRefGoogle Scholar
  36. Guilbert, J. M., & Park, C. F. (2007). The geology of ore deposits. Long Grove: Waveland Press 985p.Google Scholar
  37. Hing, T. T. (1969). Geology and soils of the Ranau-Luhan area, Sabah, East Malaysia. Kuala Lumpur: Department of Geology, University of Malaya 86p.Google Scholar
  38. Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. Journal of Environmental Quality, 22(2), 335–348.CrossRefGoogle Scholar
  39. Hseu, Z. Y. (2006). Concentration and distribution of chromium and nickel fractions along a serpentinitic toposequence. Soil Science, 171(4), 341–353.CrossRefGoogle Scholar
  40. Hseu, Z. Y., & Iizuka, Y. (2013). Pedogeochemical characteristics of chromite in a paddy soil derived from serpentinites. Geoderma, 202, 126–133.CrossRefGoogle Scholar
  41. Hseu, Z. Y., Tsai, H., Hsi, H. C., & Chen, Y. C. (2007). Weathering sequences of clay minerals in soils along a serpentinitic toposequence. Clays and Clay Minerals, 55(4), 389–401.CrossRefGoogle Scholar
  42. Hseu, Z. Y., Zehetner, F., Ottner, F., & Iizuka, Y. (2015). Clay-mineral transformations and heavy-metal release in paddy soils formed on serpentinites in eastern Taiwan. Clays and Clay Minerals, 63(2), 119–131.CrossRefGoogle Scholar
  43. Hseu, Z. Y., Watanabe, T., Nakao, A., & Funakawa, S. (2016). Partition of geogenic nickel in paddy soils derived from serpentinites. Paddy and Water Environment, 14(3), 417–426.CrossRefGoogle Scholar
  44. http://amphibiaweb.org/maps/geo-malaysia.html, Accessed: 20 September 2017.
  45. Hutchison, C. S. (2005). Geology of north-west Borneo: Sarawak, Brunei and Sabah. Amsterdam: Elsevier Science 421p.Google Scholar
  46. Hutchison, C. S., Tan, D. N. K., & Malaya, U. (2009). Geology of peninsular Malaysia. Kuala Lumpur: University of Malaya 479p.Google Scholar
  47. INWQS. (2006). Interim national water quality standards of Malaysia (online) http://www.wepa-db.net/policies/law/malaysia/eq_surface.htm (April 2010).
  48. IUSS Working Group WRB. (2015). World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.Google Scholar
  49. Jatmika Setiawan. (2009) Evolusi struktur di jalur Tengah Semenanjung Malaysia, dengan penekanan terhadap Negri Kelantan Ph.D thesis, School of Environmental and Natural Resource Sciences, University Kebangsaan Malaysia. 132p.Google Scholar
  50. Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. New York: Springer 550p.CrossRefGoogle Scholar
  51. Kar, D., Sur, P., Mandal, S., Saha, T., & Kole, R. (2008). Assessment of heavy metal pollution in surface water. International journal of Environmental Science and Technology, 5(1), 119–124.CrossRefGoogle Scholar
  52. Kierczak, J., Neel, C., Bril, H., & Puziewicz, J. (2007). Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma, 142, 165–177.CrossRefGoogle Scholar
  53. Kierczak, J., Neel, C., Aleksander-Kwaterczak, U., Helios-Rybicka, E., Bril, H., & Puziewicz, J. (2008). Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: a combined approach. Chemosphere, 73(5), 776–784.CrossRefGoogle Scholar
  54. Kumar, A., & Maiti, S. K. (2013). Availability of chromium, nickel and other associated heavy metals of ultramafic and serpentine soil/rock and in plants. International Journal of Emerging Technology and Advanced Engi neering, 3(2), 256–268.Google Scholar
  55. Lu, X., Wang, L., Li, L. Y., Lei, K., Huang, L., & Kang, D. (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. Journal of Hazardous Materials, 173(1), 744–749.CrossRefGoogle Scholar
  56. Mahfoud, R. F., & Beck, J. N. (1997). Copper mineralizations in the ophiolite of Oman: the genesis and emplacement relationship with the orogenic movements of serpentinised peridotite. International Geology Review, 39(3), 252–286.CrossRefGoogle Scholar
  57. Massoura, S. T., Echevarria, G., Becquer, T., Ghanbaja, J., Leclerc-Cessac, E., & Morel, J. L. (2006). Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma, 136(1–2), 28–37.CrossRefGoogle Scholar
  58. Mclennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2(4), 1021.CrossRefGoogle Scholar
  59. Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geological Journal, 2, 108–118.Google Scholar
  60. O’Hanley, D. S. (1996). Serpentinites: records of tectonic and petrological history. New York: Oxford University Press 277p.Google Scholar
  61. Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004). Chromium geochemistry in serpentinised ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal of Science, 304(1), 67–101.CrossRefGoogle Scholar
  62. Peterson, J. A. (1984). Metallogenetic maps of the ophiolite belts of the western United States. Reston: US Geological Survey.Google Scholar
  63. Pirajno, F. (2009). Hydrothermal processes associated with meteorite impacts. Hydrothermal processes and mineral systems (pp. 1097–1130). Amsterdam: Springer Netherlands.CrossRefGoogle Scholar
  64. Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19(3), 230–241.CrossRefGoogle Scholar
  65. Quantin, C., Ettler, V., Garnier, J., & Šebek, O. (2008). Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. Comptes Rendus Geoscience, 340(12), 872–882.CrossRefGoogle Scholar
  66. Rahim, S. A., MdTan, M., & Musta, B. (1996). Heavy metals composition of some soils developed from basic and ultrabasic rocks in Malaysia Borneo. Science, 2, 33–46.Google Scholar
  67. Raous, S., Becquer, T., Garnier, J., Martins, E. S., Echevarria, G., & Sterckeman, T. (2010). Mobility of metals in nickel mine spoil materials. Applied Geochemistry, 25, 1746–1755.CrossRefGoogle Scholar
  68. Raous, S., Echevarria, G., Sterckeman, T., Hanna, K., Thomas, F., Martins, E. S., & Becquer, T. (2013). Potentially toxic metals in ultramafic mining materials: identification of the main bearing and reactive phases. Geoderma, 192, 111–119.CrossRefGoogle Scholar
  69. Rashmi BN, Prabhakar BC, Gireesh RV, Nijagunaiah R, Ranganath RM (2009) Nickel anomalies in ultramafic profiles of Jayachamarajapura schist belt, Western Dharwar Craton. Current Science, 96, 1512–1517Google Scholar
  70. Repin, R. (1998). Preliminary survey of serpentine vegetation areas in Sabah. Sabah Parks Nature Journal, 1, 19–28.Google Scholar
  71. Richardson, J. A. (1939). The geology and mineral resources of the neighbourhood of Raub, Pahang with an account of the geology of the Raub Australian Gold Mine. Kuala Lumpur: Geological Survey of Malaysia 166p.Google Scholar
  72. Schwertmann, U., & Latham, M. (1986). Properties of iron oxides in some New Caledonian oxisols. Geoderma, 39(2), 105–123.CrossRefGoogle Scholar
  73. Shah, M. T., Ara, J., Muhammad, S., Khan, S., & Tariq, S. (2012). Health risk assessment via surface water and sub-surface water consumption in the mafic and ultramafic terrain, Mohmand agency, northern Pakistan. Journal of Geochemical Exploration, 118, 60–67.CrossRefGoogle Scholar
  74. Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739–753.CrossRefGoogle Scholar
  75. Skordas, K., & Kelepertsis, A. (2005). Soil contamination by toxic metals in the cultivated region of Agia, Thessaly, Greece. Identification of sources of contamination. Environmental Geology, 48(4), 615–624.CrossRefGoogle Scholar
  76. Soil Survey Division Staff. (1993). Soil survey manual. Washington, DC: United States Department of Agriculture.Google Scholar
  77. Streit, E., Kelemen, P., & Eiler, J. (2012). Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Samail ophiolite, Oman. Contributions to Mineralogy and Petrology, 164(5), 821–837.CrossRefGoogle Scholar
  78. Tahri, M., Benyaich, F., Bounakhla, M., Bilal, E., Gruffat, J. J., Moutte, J., & Garcia, D. (2005). Multivariate analysis of heavy metal contents in soils, sediments and water in the region of Meknes (Central Morocco). Environmental Modeling and Assessment, 102(1–3), 405–417.CrossRefGoogle Scholar
  79. Tashakor, M. (2014). Geochemistry of serpentinite and its effect on the environment: case study at Peninsular and Sabah Malaysia. Unpublished PhD Thesis. University Kebangsaan Malaysia (UKM). 234 p.Google Scholar
  80. Tashakor, M., Hamzah, M. (2011). An accurate XRF technique for the analysis of geological materials. Proceeding Volume of National Geoscience Conference, hlm. 115. The Puteri Pacific Johor Bahru, Johor, Malaysia. 11–12 June.Google Scholar
  81. Tashakor, M., Yaacob, W. Z. W., Mohamad, H., Ghani, A. A., & Saadati, N. (2014). Assessment of selected sequential extraction and the toxicity characteristic leaching test as indices of metal mobility in serpentinite soils. Chemical Speciation & Bioavailability, 26(3), 139–147(9).CrossRefGoogle Scholar
  82. Tashakor, M., Hochwimmer, B., & Imanifard, S. (2015). Control of grain-size distribution of serpentinite soils on mineralogy and heavy metal concentration. Asian Journal of Earth Sciences, 8(2), 45.CrossRefGoogle Scholar
  83. Tashakor, M., Hochwimmer, B., & Brearley, F. Q. (2017). Geochemical assessment of metal transfer from rock and soil to water in serpentine areas of Sabah (Malaysia). Environment and Earth Science, 76, 281.CrossRefGoogle Scholar
  84. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin, 72(2), 175–192.CrossRefGoogle Scholar
  85. van der Ent, A. (2011). The ecology of ultramafic areas in Sabah: threats and conservation needs. Gardens’ Bulletin Singapore, 63, 385–394.Google Scholar
  86. van der Ent, A., Edraki, M. (2018). Environmental geochemistry of the abandoned Mamut Copper Mine (Sabah) Malaysia. Environmental Geochemistry and Health, 40(1):189-207.Google Scholar
  87. van der Ent, A., Baker, A. J. M., Van Balgooy, M. M. J., & Tjoa, A. (2013). Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. Journal of Geochemical Exploration, 128, 72–79.CrossRefGoogle Scholar
  88. van der Ent, A., Cardace, D., Tibbett, M., & Echevarria, G. (2018). Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena, 160, 154–169.CrossRefGoogle Scholar
  89. Vardaki, C., & Kelepertsis, A. (1999). Environmental impact of heavy metals (Fe, Ni, Cr, Co) in soils waters and plants of triada in euboea from ultrabasic rocks and nickeliferous mineralisation. Environmental Geochemistry and Health, 21(3), 211–226.CrossRefGoogle Scholar
  90. Vithanage, M., Rajapaksha, A. U., Oze, C., Rajakaruna, N., & Dissanayake, C. B. (2014). Metal release from serpentine soils in Sri Lanka. Environmental Monitoring and Assessment, 186(6), 3415–3429.CrossRefGoogle Scholar
  91. Voutsis, N., Kelepertzis, E., Tziritis, E., & Kelepertsis, A. (2015). Assessing the hydrogeochemistry of groundwaters in ophiolite areas of Euboea Island, Greece, using multivariate statistical methods. Journal of Geochemical Exploration, 159, 79–92.CrossRefGoogle Scholar
  92. Wesolowski, M. F. (2003). Geochemical analysis of the soils and surface water derived from chemical weathering of ultramafic rock, Cornwall, England: trace metal speciation and ecological consequences. B.S. thesis, Department of geology, Middlebury College.74p.Google Scholar
  93. WHO. (2006). Guidelines for drinking-water quality. Geneva: Switzerland.Google Scholar
  94. Yassin, A., Alabidi, A., Hussain, M., Al-Ansari, N., & Knutsson, S. (2015). Copper ores in Mawat ophiolite complex (part of ZSZ) NE Iraq. Natural Resources, 6(10), 514–526.CrossRefGoogle Scholar
  95. Yeap, K. L. (1986). Geology of an area south of Bahau. B.S. thesis, Department of Geology, University of Malaya. 127p.Google Scholar
  96. Yuen, H. C. (1996). A study of the distribution and transport of heavy metals in Malaysian rivers and seawater. Kuala Lumpur: Department of Geology. University Malaya 384p.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.TehranIran
  2. 2.School of Geology, College of ScienceUniversity of TehranTehranIran
  3. 3.Centre for Mined Land Rehabilitation, Sustainable Minerals InstituteThe University of QueenslandQueenslandAustralia
  4. 4.Laboratoire Sols et EnvironnementUniversité de Lorraine, INRA54000 NancyFrance

Personalised recommendations