Assessment of water quality monitoring for the optimal sensor placement in lake Yahuarcocha using pattern recognition techniques and geographical information systems

  • Gabriel Jácome
  • Carla Valarezo
  • Changkyoo Yoo


Pollution and the eutrophication process are increasing in lake Yahuarcocha and constant water quality monitoring is essential for a better understanding of the patterns occurring in this ecosystem. In this study, key sensor locations were determined using spatial and temporal analyses combined with geographical information systems (GIS) to assess the influence of weather features, anthropogenic activities, and other non-point pollution sources. A water quality monitoring network was established to obtain data on 14 physicochemical and microbiological parameters at each of seven sample sites over a period of 13 months. A spatial and temporal statistical approach using pattern recognition techniques, such as cluster analysis (CA) and discriminant analysis (DA), was employed to classify and identify the most important water quality parameters in the lake. The original monitoring network was reduced to four optimal sensor locations based on a fuzzy overlay of the interpolations of concentration variations of the most important parameters.


Spatial variations Temporal variations Water quality Pattern recognition Sensor placement Lake Yahuarcocha 



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (no. 2015R1A2A2A11001120). We thank the researchers of Universidad Técnica del Norte for sharing data and information, as well as the technical staff of the Municipal Company of Water Treatment and Sewage of Ibarra (EMAPA-I) for their support and collaboration during the fieldwork.


  1. Aguilera, X., Declerck, S., Meester, L., Maldonado, M., & Ollevier, F. (2006). Tropical high Andes lakes: a limnological survey and an assessment of exotic rainbow trout (Oncorhynchus mykiss). Limnologica, 36, 258–268.CrossRefGoogle Scholar
  2. Alamdari, P., Nematollahi, O., & Mirhosseini, M. (2012). Assessment of wind energy in Iran: a review. Renewable and Sustainable Energy Reviews, 16(1), 836–860.CrossRefGoogle Scholar
  3. Alharbi, B. S. (2013). Creating a vibrant place for the city of redlands assessing the suitability of an abandoned downtown space for mixed use development. Master thesis, University of Redlands, USA, 92 pp.Google Scholar
  4. APHA, AWWA, WEF (2012). Standard methods for examination of water and wastewater. 22nd edition. Washington: American Public Health Association. 1360 pp. ISBN 978–087553–013-0.Google Scholar
  5. Arif, M., Hussain, I., Hussain, J., Sharma, M. K., Kumar, S., & Bhati, G. (2015). GIS-based inverse distance weighting spatial interpolation technique for fluoride distribution in south west part of Nagaur District, Rajasthan. Cogent Environmental Science, 1(1), 1038944.CrossRefGoogle Scholar
  6. Ávila, A., Burrel, J. L., Domingo, A., Fernández, E., Godall, J., & Llopart, J. M. (1984). Limnología del Lago Grande de Estanya (Huesca). Oecologia aquatica, 7, 3–24.Google Scholar
  7. Baczynska, K., Pearson, A. J., O'Hagan, J. B., & Heydenreich, J. (2013). Effect of altitude on solar UVR and spectral and spatial variations of UV irradiances measured in Wagrain, Austria in winter. Radiation Protection Dosimetry, 154(4), 497–504.CrossRefGoogle Scholar
  8. Barron, J., & Ashton, C. (2007). The effect of temperature on conductivity measurement. County Clare: Reagecon Diagnostics, Ltd..Google Scholar
  9. Blomme, J. (2014). General limnology and zooplankton ecology of two tropical high altitude lakes in Northern Ecuador: Mojanda & Yahuarcocha. Master thesis, KU Leuven, Belgium, 80 pp.Google Scholar
  10. Chapman, D. (1996). Water quality assessments—a guide to use of biota, sediments and water in environmental monitoring. University Press, Cambridge ISBN, 2(1), 609.Google Scholar
  11. Chen, Y., Zhao, K., Wu, Y., Gao, S., Cao, W., Bo, Y., Shang, Z., Wu, J., & Zhou, F. (2016). Spatio-temporal patterns and source identification of water pollution in Lake Taihu (China). Water, 8(3), 86.CrossRefGoogle Scholar
  12. Coello, D., Pesantes, F., Macías, P., & Revelo, W. (2005). Mortandad de peces en la Laguna Yahuarcocha (Junio, 2005). Informe. Instituto Nacional de Pesca.Google Scholar
  13. De Hoyos, C. (1996). Limnología del Lago de Sanabria: variabilidad interanual del fitoplancton. PhD thesis, Univ. Salamanca, Spain, 438 pp.Google Scholar
  14. Ellis, J. C. (1989). Handbook on the design and interpretation of monitoring programs. Medmenham: Water Research Center.Google Scholar
  15. Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis. Quality and quantity. Vol. 14.Google Scholar
  16. Groot, S., & Schilperoort, T. (1984). Optimization of water-quality monitoring networks. Water Science Technology, 16(5–7), 275–287.Google Scholar
  17. Ivanković, A., Habul, E. V., & Knezović, Z. (2011). Physicochemical characteristics of shallow, high mountains Lake Blidinje (in a karst area of Bosnia and Herzegovina) with emphasis on its trophic status. Oceanol. Hydrobiol. St., 40(3), 19–27.Google Scholar
  18. Johansson, L., Temnerud, J., Abrahamsson, J., & Kleja, D. B. (2010). Variation in organic matter and water color in Lake Mälaren during the past 70 years. Ambio, 39, 116–125.CrossRefGoogle Scholar
  19. Johnson, R. A., & Wichern, D. W. (1992). Applied multivariate statistical analysis (5th ed.). New Jersey: Prentice-Hall International.Google Scholar
  20. Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., & Shah, A. Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and Environmental Safety, 72(2), 301–309.CrossRefGoogle Scholar
  21. Kinzie, R. A., Banaszak, A. T., & Lesser, M. P. (1998). Effects of ultraviolet radiation on primary productivity in a high altitude tropical lake. Hydrobiologia, 385, 23–32.CrossRefGoogle Scholar
  22. Lin, H., & Xia, F. (1995). A multi-window GIS approach for water quality data analysis. Chinese Geographical Science, 5(3), 257–264.CrossRefGoogle Scholar
  23. Luque, J. A., (2003). El Lago de Sanabria: un sensor de las oscilaciones climáticas del Atlántico Norte durante los últimos 6000 años. PhD Thesis, Univ. Barcelona, Spain, 446 pp.Google Scholar
  24. Mandonx, T. (2014). Trophic status and phytoplankton ecology of two lakes in northern Ecuador: Yahuarcocha & Mojanda. Master thesis, KU Leuven, Belgium, 86 pp.Google Scholar
  25. Maridueña, A., Chalén, N., Coello, D., Cajas, E., Solís-Coello, P., & Aguilar, F. (2011). Mortandad de peces en la Laguna de Yahuarcocha, Cantón Ibarra, Provincia de Imbabura. Febrero 2003. Boletín especial, 2(1), 1–128.Google Scholar
  26. McLachlan, G. J. (2004). Discriminant analysis and statistical pattern recognition. Wiley.Google Scholar
  27. Ministerio del Ambiente de Ecuador (2015). Texto Unificado de Legislación Ambiental Secundaria, Libro VI De la Calidad Ambiental. Acuerdo Ministerial No. 028 (Febrero 2015). Quito – Ecuador, 220 pp.Google Scholar
  28. Mohajer, A., Nematollahi, O., Joybari, M. M., Hashemi, S. A., & Assari, M. R. (2013). Experimental investigation of a hybrid solar drier and water heater system. Energy Conversion and Management, 76, 935–944.CrossRefGoogle Scholar
  29. Mosquera, P. V., Hampel, H., Vázquez, R. F., Alonso, M., & Catalan, J. (2017). Abundance and morphometry changes across the high-mountain lake-size gradient in the tropical Andes of Southern Ecuador. Water Resources Research, 53, 7269–7280.CrossRefGoogle Scholar
  30. Nam, K., & Aral, M. M. (2007). Optimal placement of monitoring sensors in lakes. Proceedings of the 2007 Georgia Water Resources Conference, 2–5.Google Scholar
  31. Niamien-Ebrottie, J. E., Bhattacharyya, S., Deep, P. R., & Nayak, B. (2015). Cyanobacteria and cyanotoxins in the world: review. International Journal of Applied Research., 1(8), 563–569.Google Scholar
  32. Noori, R., Sabahi, M. S., Karbassi, A. R., Baghvand, A., & Zadeh, H. T. (2010). Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination, 260(1–3), 129–136.CrossRefGoogle Scholar
  33. Nurminen, L., & Horppila, J. (2009). Life form dependent impacts of macrophyte vegetation on the ratio of resuspended nutrients. Water Research, 43, 3217–3226.CrossRefGoogle Scholar
  34. Papatheodorou, G., Demopoulou, G., & Lambrakis, N. (2006). A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques. Ecological Modelling, 193(3–4), 759–776.CrossRefGoogle Scholar
  35. Pejman, H., Bidhendi, G. R. N., Karbassi, R., Mehrdadi, N., & Bidhendi, M. E. (2009). Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. International journal of Environmental Science and Technology, 6(3), 467–476.CrossRefGoogle Scholar
  36. Saelens, P. (2015). Ecological functioning of a shallow lake in Ecuador, Laguna Yahuarcocha. Master thesis, KU Leuven, Belgium, 96 pp.Google Scholar
  37. Scheffer M (1998). Ecology of shallow lakes. Chapman and Hall. 313 p.Google Scholar
  38. Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38(18), 3980–3992.CrossRefGoogle Scholar
  39. Skalski, J. R., & McKenzie, D. H. (1982). A design for aquatic monitoring programs. Journal Environmental Management, 14(3), 237–251.Google Scholar
  40. Steinitz-Kannan, M. (1997). The lakes in Andean protected areas of Ecuador. The George Wright FORUM, 14(3), 33–43.Google Scholar
  41. Usali, N., & Hasmadi, M. (2010). Use of remote sensing and GIS in monitoring water quality. Journal of Sustainable Development, 3(3), 228–238.CrossRefGoogle Scholar
  42. Van Colen, W., Portilla, K., Oña, T., Wyseure, G., Goethals, P., Velarde, E., & Muylaert, K. (2017). Limnology of the neotropical high elevation shallow lake Yahuarcocha (Ecuador) and challenges for managing eutrophication using biomanipulation. Limnologica, 67, 37–44.CrossRefGoogle Scholar
  43. Wetzel, R. G. (2001). Limnology: lake and river ecosystems (3rd ed.). San Diego: Academic Press.Google Scholar
  44. Wunderlin, D., Díaz, M., Amé, M., Pesce, S., Hued, A., & Bistoni, M. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquı́a River Basin (Córdoba—Argentina). Water Research, 35(12), 2881–2894.CrossRefGoogle Scholar
  45. Yang, Y. H., Zhou, F., Guo, H. C., Sheng, H., Liu, H., Dao, X., & He, C. J. (2010). Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environmental Monitoring and Assessment, 170(1–4), 407–416.CrossRefGoogle Scholar
  46. Zhao, Y., Xia, X. H., Yang, Z. F., & Wang, F. (2012). Assessment of water quality in Baiyangdian Lake using multivariate statistical techniques. Procedia Environmental Sciences, 13(2011), 1213–1226.CrossRefGoogle Scholar
  47. Zhou, F., Liu, Y., & Guo, H. (2007). Application of multivariate statistical methods to water quality assessment of the watercourses in northwestern new territories, Hong Kong. Environmental Monitoring and Assessment, 132, 1–3), 1–13.CrossRefGoogle Scholar
  48. Zhu, M., Zhu, G., Nurminen, L., Wu, T., Deng, J., Zhang, Y., Qin, B., & Ventelä, A. (2015). The influence of Macrophytes on sediment resuspension and the effect of associated nutrients in a shallow and large Lake (Lake Taihu, China). PLoS One, 10(6), e0127915.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gabriel Jácome
    • 1
  • Carla Valarezo
    • 2
  • Changkyoo Yoo
    • 1
  1. 1.Department of Environmental Sciences and Engineering, College of Engineering, Center for Environmental StudiesKyung Hee UniversityYongin-siSouth Korea
  2. 2.Empresa Pública Municipal de Agua Potable y Alcantarillado de Ibarra EMAPA-IIbarraEcuador

Personalised recommendations