Effects of indole-3-butytric acid on lead and zinc accumulations in Pseudostellaria maximowicziana

  • Zhi Ran
  • Cheng Chen
  • Fabo Chen
  • Ming’an Liao
  • Lijin LinEmail author
  • Xiulan Lv
  • Qunxian Deng
  • Xun Wang
  • Jin Wang
  • Yi Tang
  • Huaxiong Li


Plant hormones can improve the phytoremediation capabilities of heavy metal hyperaccumulator plants. In this study, different doses of indole-3-butytric acid (IBA) were sprayed on the leaves of the lead (Pb) and zinc (Zn) accumulator plant Pseudostellaria maximowicziana, which was planted in Pb–Zn contaminated soil, and the effects of IBA on Pb and Zn accumulation levels in P. maximowicziana were studied. Spraying 25- and 50-mg/L IBA doses increased the stem, leaf and shoot biomasses of P. maximowicziana compared with the control, while 75- and 100-mg/L IBA doses decreased them. The 50-mg/L IBA dose increased the P. maximowicziana contents of chlorophyll a, total chlorophyll and carotenoid of compared with the control, and other doses had no significant effects or decreased these values. Spraying IBA reduced the superoxide dismutase activity of P. maximowicziana compared with the control, but improved the peroxidase and catalase activities. The 50-, 75-, and 100-mg/L IBA doses increased the Pb and Zn contents in P. maximowicziana compared with the control and also increased the amounts of Pb and Zn extracted by P. maximowicziana. Thus, 50 mg/L of IBA could promote the growth and the Pb and Zn phytoremediation capabilities of P. maximowicziana.


Indole-3-butytric acid Pseudostellaria maximowicziana Lead Zinc Accumulator plant 



We thank Lesley Benyon, PhD, from Liwen Bianji, Edanz Group China (, for editing the English text of a draft of this manuscript.


  1. Adie, B., Perez-Perez, J., Perez-Perez, M., Godoy, M., Sanchez-Serrano, J. E., & Solano, R. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell, 19(5), 1665–1681.CrossRefGoogle Scholar
  2. Bari, R., & Jones, J. D. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology, 69(4), 473–488.CrossRefGoogle Scholar
  3. Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.CrossRefGoogle Scholar
  4. Cassina, L., Tassi, E., Morelli, E., Giorgetti, L., Remorini, D., Chaney, R. L., & Barbafieri, M. (2011). Exogenous cytokinin treatments of a Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: Implications for phytoextraction. International Journal of Phytoremediation, 13, 90–101.CrossRefGoogle Scholar
  5. Cassina, L., Tassi, E., Pedron, F., Petruzzelli, G., Ambrosini, P., & Barbafieri, M. (2012). Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. Journal of Hazardous Materials, 231-232, 36–42.CrossRefGoogle Scholar
  6. Choudhury, S., & Panda, S. K. (2004). Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulgarian Journal of Plant Physiology, 30, 95–110.Google Scholar
  7. Hao, Z. B., Cang, J., & Xu, Z. (2004). Plant physiology experiment. Harbin: Harbin Institute of Technology Press (in Chinese).Google Scholar
  8. Hui, J. C., Jiang, X. J., Yang, Y. X., Wu, J., Zhu, X. M., & Lin, L. J. (2009). Screening of lead-zinc enrichment-plants from Hanyuan lead-zinc mine areas in Sichuan Province. Research of Soil and Water Conservation, 24, 233–236 (in Chinese).Google Scholar
  9. Husen, A., & Pal, M. (2007). Metabolic changes during adventitious root primordium development in Tectona grandis Linn. F (teak) cuttings as affected by age of donor plants and auxin (IBA and NAA) treatment. New Forests, 33(3), 309–323.CrossRefGoogle Scholar
  10. Jemâa, E., Saïda, A., & Sadok, B. (2011). Impact of indole-3-butyric acid and indole-3-acetic acid on the lateral roots growth of Arabidopsis under salt stress conditions. Australian Journal of Agricultural Engineering, 2(1), 18–24.Google Scholar
  11. Li, J. T., Zhang, Y. H., Guo, X. S., Wang, C., Li, K., & Hu, Z. H. (2014). Effect of IBA on growth of Achyranthus bidentata and the accumulation of major medicinal components. Northern Horticulture, 37, 153–155 (in Chinese).Google Scholar
  12. Li, M., & Zhang, G. (1999). Effects of paclobutrazol on the morphology, structure, and chlorophyll content of regenerated plantlets of maize. Israel Journal of Plant Sciences, 47(2), 85–88.CrossRefGoogle Scholar
  13. Ma, Y. M. (2014). Effects of different concentrations of IBA on the growth of Quercus mongolica seedlings. The Journal of Hebei Forestry Science and Technology, 41, 23–24 (in Chinese).Google Scholar
  14. Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—A practical guide. Journal of Experimental Botany, 51, 659–668.CrossRefGoogle Scholar
  15. Mohtadi, A., & Ghaderian, S. M. (2012). Evaluation of auxin (IAA) and kinetin effects on lead uptake and accumulation in Matthiola flavida Bioss. Journal of Cell & Tissue, 3, 161–169.Google Scholar
  16. Ort, D. R., Zhu, X. G., & Melis, A. (2011). Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiology, 155, 79–85.CrossRefGoogle Scholar
  17. Piotrowska-Niczyporuk, A., Bajguz, A., Zambrzycka, E., & Godlewska-Żyłkiewicz, B. (2012). Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiology and Biochemistry, 52(1), 52–56.CrossRefGoogle Scholar
  18. Schützendübel, A., & Polle, A. (2002). Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53, 1351–1365.Google Scholar
  19. Tassi, E., Pouget, J., Petruzzelli, G., & Barbafieri, M. (2008). The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere, 71(1), 66–73.CrossRefGoogle Scholar
  20. Thévenod, F., & Lee, W. K. (2013). Cadmium and cellular signaling cascades: Interactions between cell death and survival pathways. Archives of Toxicology, 87, 1743–1786.CrossRefGoogle Scholar
  21. Ushimaru, T., Kanematsu, S., Shibasaka, M., & Tsuji, H. (1999). Effect of hypoxia on the antioxidative enzymes in aerobically grown rice (Oryza sativa) seedlings. Physiologia Plantarum, 107(2), 181–187.CrossRefGoogle Scholar
  22. Wang, D. N., & Xue, J. H. (2012). Effects of IBA on uptake of Cd2+ in the contaminated soil by Liquidambar formosana Hance seedlings. Journal of Nanjing Forestry University (Natural Science Edition), 36, 121–124 (in Chinese).Google Scholar
  23. Wang, J., Lin, L., Luo, L., Liao, M., Lv, X., & Wang, Z. (2016a). The effects of abscisic acid (ABA) addition on cadmium accumulation of two ecotypes of Solanum photeinocarpum. Environmental Monitoring and Assessment, 188(3), 1–8.Google Scholar
  24. Wang, Y. P., Zhang, S. Q., Liu, X. J., Lin, J., Qi, Y., & Chen, M. (2016b). Effects of exogenous Ca2+ and IBA on seedlings growth of energy plant hybrid Pennisetum under NaCl stress. Acta Ecologica Sinica, 36, 369–376.Google Scholar
  25. Ye, L. C., Zhang, Q. S., Jiang, X. J., Zhu, X. M., Lin, L. J., & Shao, J. R. (2010). Characteristics of accumulating lead and zinc by diggings plant Pseudostellaria maximowicziana. China Environmental Science, 30(2), 239–245.Google Scholar
  26. Yuan, L., & Xu, D. (2002). Stimulatory effect of exogenous GA3 on photosynthesis and the level of endogenous GA1+3 in soybean leaf. Acta Photophysiologica Sinica, 28(4), 317–320.Google Scholar
  27. Zengin, F. K. (2006). The effects of Co2+ and Zn2+ on the contents of protein, abscisic acid, proline and chlorophyll in bean (Phaseolus vulgaris cv. Strike) seedlings. Journal of Environmental Biology, 27, 441–448.Google Scholar
  28. Zhang, W. L., Huo, Q. Z., Zhu, C. H., & Yang, Y. H. (2010a). Technical measures of improving the survival rate of fruit trees in sandy and semi-arid areas. Northern Fruits, 32, 51–52 (in Chinese).Google Scholar
  29. Zhang, X. F., Xia, H. P., Li, Z. A., Zhuang, P., & Gao, B. (2011). Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. Journal of Hazardous Materials, 189, 414–419.CrossRefGoogle Scholar
  30. Zhang, X., Xia, H., Li, Z., Zhuang, P., & Gao, B. (2010b). Potential of four forage grasses in remediation of cd and Zn contaminated soils. Bioresource Technology, 101(6), 2063–2066.CrossRefGoogle Scholar
  31. Zhao, L., Pan, Y. Z., Zhu, Q., Yue, J., & Mi, S. H. (2012). Effects of 6-BA, GA3 and IBA on photosynthetic pigment content and related enzyme activities of Lilium case blanca. Acta Prataculturae Sinica, 21, 248–256.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of HorticultureSichuan Agricultural UniversityChengduChina
  2. 2.College of EconomicsSichuan Agricultural UniversityChengduChina
  3. 3.Life Science and Technology InstituteYangtze Normal UniversityChongqingChina
  4. 4.Institute of Pomology and OlericultureSichuan Agricultural UniversityChengduChina
  5. 5.Institute of Forestry and PomologyNeijiang Academy of Agricultural SciencesNeijiangChina

Personalised recommendations