Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, North-West of Algeria

  • Abderrezak Kamel Toubal
  • Mohammed Achite
  • Sylvain Ouillon
  • Abdelatif Dehni
Article

Abstract

Soil losses must be quantified over watersheds in order to set up protection measures against erosion. The main objective of this paper is to quantify and to map soil losses in the Wadi Sahouat basin (2140 km2) in the north-west of Algeria, using the Revised Universal Soil Loss Equation (RUSLE) model assisted by a Geographic Information System (GIS) and remote sensing. The Model Builder of the GIS allowed the automation of the different operations for establishing thematic layers of the model parameters: the erosivity factor (R), the erodibility factor (K), the topographic factor (LS), the crop management factor (C), and the conservation support practice factor (P). The average annual soil loss rate in the Wadi Sahouat basin ranges from 0 to 255 t ha−1 year−1, maximum values being observed over steep slopes of more than 25% and between 600 and 1000 m elevations. 3.4% of the basin is classified as highly susceptible to erosion, 4.9% with a medium risk, and 91.6% at a low risk. Google Earth reveals a clear conformity with the degree of zones to erosion sensitivity. Based on the soil loss map, 32 sub-basins were classified into three categories by priority of intervention: high, moderate, and low. This priority is available to sustain a management plan against sediment filling of the Ouizert dam at the basin outlet. The method enhancing the RUSLE model and confrontation with Google Earth can be easily adapted to other watersheds.

Keywords

Erosion Wadi Sahouat RUSLE Model Builder GIS Remote sensing Algeria 

References

  1. Achite, M., & Meddi, M. (2004). Estimation du transport solide dans le bassin-versant de l’oued Haddad (Nord-Ouest algérien). Sécheresse, 15(4), 367–373.Google Scholar
  2. Achite, M., & Meddi, M. (2005). Variabilité spatio-temporelle des apports liquides et solide en zone semi-aride. Cas du bassin versant de l’oued Mina (nord-ouest algérien). Revue des Sciences de l’Eau, 18, 37–56.CrossRefGoogle Scholar
  3. Achite, M., & Ouillon, S. (2016). Recent changes in climate, hydrology and sediment load in the Wadi Abd, Algeria (1970–2010). Hydrology of Earth System Sciences, 20, 1355–1372  https://doi.org/10.5194/hess-20-1355-2016.CrossRefGoogle Scholar
  4. Alekseevskiy, N. I., Berkovich, K. M., & Chkalov, R. S. (2008). Erosion, sediment transportation and accumulation in rivers. International Journal of Sediment Research, 23, 93–105.  https://doi.org/10.1016/S1001-6279(08)60009-8.CrossRefGoogle Scholar
  5. Balasubramani, K., Veena, M., Kumaraswamy, K., & Saravanabavan, V. (2015). Estimation of soil erosion in a semi-arid watershed of Tamil Nadu (India) using revised universal soil loss equation (rusle) model through GIS. Modeling Earth Systems and Environment, 1(2), 10.  https://doi.org/10.1007/s40808-015-0015-4.CrossRefGoogle Scholar
  6. Bayramin, I., Basaran, M., Erpul, G., & Canga, M. R. (2008). Assessing the effects of land use changes on soil sensitivity to erosion in a highland ecosystem of semi-arid Turkey. Environmental Monitoring and Assessment, 140, 249–265.  https://doi.org/10.1007/s10661-007-9864-2.CrossRefGoogle Scholar
  7. Benchettouh, A., Kouri, L., & Jebari, S. (2017). Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria). Arabian Journal of Geosciences, 10, 79.  https://doi.org/10.1007/s12517-017-2875-6.CrossRefGoogle Scholar
  8. Benkadja, R., Boussag, F., & Benkadja, A. (2015). Identification et évaluation du risque d’érosion sur le bassin versant du K’sob (Est Algérien). Bulletin of Engineering Geology and the Environment, 74, 91–102.  https://doi.org/10.1007/s10064-014-0611-y.CrossRefGoogle Scholar
  9. Biswas, S. S., & Pani, P. (2015). Estimation of soil erosion using RUSLE and GIS techniques: a case study of Barakar River basin, Jharkhand, India. Modeling Earth Systems and Environment, 1, 42.  https://doi.org/10.1007/s40808-015-0040-3.CrossRefGoogle Scholar
  10. Blanco, H., & Lal, R. (2010). Principles of soil conservation and management. Dordrecht, ISBN 978-1-4020-8708-0: Springer.  https://doi.org/10.1007/978-1-4020-8709-7.CrossRefGoogle Scholar
  11. Chadli, K. (2016). Estimation of soil loss using RUSLE model for Sebou watershed (Morocco). Modeling Earth Systems and Environment, 2, 51.  https://doi.org/10.1007/s40808-016-0105-y.CrossRefGoogle Scholar
  12. Chatterjee, S., Krishna, A. P., & Sharma, A. P. (2014). Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environmental Earth Sciences, 71, 357–374.  https://doi.org/10.1007/s12665-013-2439-3.CrossRefGoogle Scholar
  13. Chen, H., Teng, Y., & Wang, J. (2013). Load estimation and source apportionment of nonpoint source nitrogen and phosphorus based on integrated application of SLURP model, ECM, and RUSLE: a case study in the Jinjiang River, China. Environmental Monitoring and Assessment, 185, 2009–2021.  https://doi.org/10.1007/s10661-012-2684-z.CrossRefGoogle Scholar
  14. Coyne and Bellier (1980). Barrage Es Saada sur l’oued Mina, Consignes d’exploitation. Technical report, “Coyne et Bellier” consulting and engineering company, Paris.Google Scholar
  15. Dabral, P. P., Baithuri, N., & Pandey, A. (2008). Soil erosion assessment in a hilly catchment of North Eastern India using USLE, GIS and remote sensing. Water Resources Management, 22(12), 1783e1798.  https://doi.org/10.1007/s11269-008-9253-9.CrossRefGoogle Scholar
  16. De Jong, S. M., Paracchini, M. L., Bertolo, F., Folving, S., Megier, J., & de Roo, A. P. J. (1999). Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data. Catena, 37(3–4), 291–308.  https://doi.org/10.1016/S0341-8162(99)00038-7.CrossRefGoogle Scholar
  17. De Roo, A. P. J., Wesseling, C. G., & Ritsema, C. J. (1996). LISEM: a single event physically-based hydrologic and soil erosion model for drainage basins, I: Theory, input and output. Hydrological Processes, 10(8), 1107–1117.  https://doi.org/10.1002/(SICI)1099-1085(199608)10:8<1107::AID-HYP415>3.0.CO;2-4.CrossRefGoogle Scholar
  18. de Vente, J., & Poesen, J. (2005). Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth-Science Reviews, 71, 95–125.  https://doi.org/10.1016/j.earscirev.2005.02.002.CrossRefGoogle Scholar
  19. Diodato, N. (2004). Estimating Rusle’s rainfall factor in the part of Italy with a Mediterranean rainfall regime. Hydrology and Earth System Sciences, 8, 103–107.  https://doi.org/10.5194/hess-8-103-2004.CrossRefGoogle Scholar
  20. Diodato, N. (2005). Geostatistical uncertainty modelling for the environmental hazard assessment during single erosive rainstorm events. Environmental Monitoring and Assessment, 105, 25–42.  https://doi.org/10.1007/s10661-005-2815-x.CrossRefGoogle Scholar
  21. Dubreuil, P., & Guiscafre, J. (1971). La planification du réseau hydrométrique minimal. Cahiers ORSTOM, Série Hydrologie, VIII(2), 3–37.Google Scholar
  22. Dutta, D. (2016). Soil erosion, sediment yield and sedimentation of reservoir: a review. Modeling Earth Systems and Environment, 2, 123,  https://doi.org/10.1007/s40808-016-0182-y.
  23. Dutta, D., Das, S., Kundu, A., & Taj, A. (2015). Soil erosion risk assessment in Sanjal watershed, Jharkhand (India) using geo-informatics, RUSLE Model and TRMM data. Modeling Earth Systems and Environment, 1, 37.  https://doi.org/10.1007/s40808-015-0034-1.CrossRefGoogle Scholar
  24. El-Mahi, A., Meddi, M., & Bravard, J. P. (2012). Analyse du transport solide en suspension dans le bassin versant de l’Oued El Hammam (Algérie du Nord). Hydrological Sciences Journal, 57(8), 1642–1661.  https://doi.org/10.1080/02626667.2012.717700.CrossRefGoogle Scholar
  25. ESRI. (2000). Model builder for arcview spatial analyst 2. Redlands: ESRI Press.Google Scholar
  26. FAO/IIASA/ISRIC/ISS-CAS/JRC. (2009). Harmonized world soil database (version 1.1). Rome: FAO.Google Scholar
  27. Fenta, A. A., Yasuda, H., Shimizu, K., Haregeweyn, N., & Negussie, A. (2016). Dynamics of soil erosion as influenced by watershed management practices: a case study of the Agula watershed in the semi-arid highlands of northern Ethiopia. Environmental Management, 58, 889–905.  https://doi.org/10.1007/s00267-016-0757-4.CrossRefGoogle Scholar
  28. Ferreira, V., Panagopoulos, T., Cakulab, A., Andradea, R., & Arvela, A. (2015). Predicting soil erosion after land use changes for irrigating agriculture in a large reservoir of southern Portugal. Agriculture and Agricultural Science Procedia, 4, 40–49.  https://doi.org/10.1016/j.aaspro.2015.03.006.CrossRefGoogle Scholar
  29. Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS—a case study of Nethravathi Basin. Geoscience Frontiers, 7, 953–961.  https://doi.org/10.1016/j.gsf.2015.10.007.CrossRefGoogle Scholar
  30. Gaubi, I., Chaabani, A., Ben Mammou, A., & Hamza, M. H. (2017). A GIS-based soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) (Lebna watershed, Cap Bon, Tunisia). Natural Hazards, 86, 219–239.  https://doi.org/10.1007/s11069-016-2684-3.CrossRefGoogle Scholar
  31. Gay, M., Cheret, V., & Denux, J. P. (2002). Apport de la télédétection dans l’identification du risque d’érosion. La Houille Blanche, 1(81), 86.Google Scholar
  32. Giandotti, M. (1937). Idrologia, Florence (IT): Barbera Edizioni.Google Scholar
  33. Goodchild, M. F. (2005). GIS, spatial analysis and modeling overview. In D. J. Maguire, M. Batty, & M. F. Goodchild (Eds.), GIS, spatial analysis, and modeling (pp. 1–18). Redlands: ESRI Press.Google Scholar
  34. Hamza, M. H., Added, A., Rodrigue, R., Abdeljaoued, S., & Ben Mammou, A. (2007). A GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi-arid region (Metline-Ras Jebel-Raf Raf Aquifer, Northern Tunisia). Journal of Environmental Management, 84, 12–19.  https://doi.org/10.1016/j.jenvman.2006.04.004.CrossRefGoogle Scholar
  35. Hermassi, T., Cherif, M. A., & Habaieb, H. (2014). Etude du transport solide au niveau du bassin versant de Merguellil, Tunisie centrale : cas des bassins versants d’Ettiour et de Rajela. La Houille Blanche, 4, 88–96.CrossRefGoogle Scholar
  36. Ismail, J., & Ravichandran, S. (2008). RUSLE2 model application for soil erosion assessment using remote sensing and GIS. Water Resources Management, 22, 83–102.  https://doi.org/10.1007/s11269-006-9145-9.CrossRefGoogle Scholar
  37. Jain, S. K., Kumar, S., & Varghese, J. (2001). Estimation of soil erosion for a Himalayan watershed using GIS technique. Water Resources Management, 15(1), 41e54.  https://doi.org/10.1023/A:1012246029263.CrossRefGoogle Scholar
  38. Kouli, M., Soupios, P., & Vallianatos, F. (2009). Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology, 57, 483–497.  https://doi.org/10.1007/s00254-008-1318-9.CrossRefGoogle Scholar
  39. Kumar, S., & Kushwaha, S. P. S. (2013). Modelling soil erosion risk based on RUSLE-3D using GIS in a Shivalik sub-watershed. Journal of Earth System Science, 122, 389–398.  https://doi.org/10.1007/s12040-013-0276-0.CrossRefGoogle Scholar
  40. Kumar, A., Devi, M., & Deshmukh, B. (2014). Integrated remote sensing and geographic information system based RUSLE modelling for estimation of soil loss in Western Himalaya, India. Water Resources Management, 28, 3307–3317.  https://doi.org/10.1007/s11269-014-0680-5.CrossRefGoogle Scholar
  41. Lang, S. S. (2006). Slow insidious soil erosion threatens human health and welfare as well as the environment, Cornell study by asserts chronicle online. USA: Cornell University.Google Scholar
  42. Lin, C. Y., Lin, W. T., & Chou, W. C. (2002). Soil erosion prediction and sediment yield estimation: the Taiwan experience. Soil & Tillage Research, 68(2), 143–152.  https://doi.org/10.1016/S0167-1987(02)00114-9.CrossRefGoogle Scholar
  43. Lobo, G. P., & Bonilla, C. A. (2015). Effect of temporal resolution on rainfall erosivity estimates in zones of precipitation caused by frontal systems. Catena, 135, 202–207.  https://doi.org/10.1016/j.catena.2015.08.002.CrossRefGoogle Scholar
  44. Manegold, J. (2003). Using the Model Builder of ArcGIS 9 for landscape modeling. In: Buchmann E, Ervin S (eds) Trends in landscape modeling. Proceedings at Anhalt University of Applied Sciences. Wichmann, Heidelberg, 240–245 pp.Google Scholar
  45. Markhi, A., Laftouhi, N. E, Soulaimani, A., & Fniguire, F., (2015). Quantification et évaluation de l’érosion hydrique en utilisant le modèle RUSLE et déposition intégrés dans un SIG. Application dans le bassin versant n’fis dans le haut atlas de Marrakech (Maroc). European Scientific Journal, 11(29), ISSN: 1857–7881.Google Scholar
  46. Markose, V. J., & Jayappa, K. S. (2016). Soil loss estimation and prioritization of sub-watersheds of Kali River basin, Karnataka, India, using RUSLE and GIS. Environmental Monitoring and Assessment, 188, 225  https://doi.org/10.1007/s10661-016-5218-2.CrossRefGoogle Scholar
  47. Moore, I. D., & Burch, G. J. (1986). Physical basis of the length slope factor in the universal soil loss equation. Soil Science Society of America Journal, 50(5), 1294–1298.CrossRefGoogle Scholar
  48. Morgan, R.P.C. (2005). Soil erosion and conservation third ed. Blackwell Science Ltd., 304ISBN: 1-4051-1781-8.Google Scholar
  49. Morsli, B., Habi, M., Mazour, M., Hamoudi, A., & Halitim, A. (2012). Erosion et ruissellement en montagnes méditerranéennes d’Algérie du Nord: analyse des facteurs conditionnels sous pluies naturelles et artificielles. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 1, 33–40.Google Scholar
  50. Mostephaoui, T., Merdas, S., Sakaa, B., Hanafi, M. T., & Benazzouz, M. T. (2013). Cartographie des risques d’érosion hydrique par l’application de l’équation universelle de pertes en sol à l’aide d’un système d’information géographique dans le bassin versant d’el Hamel (Boussaâda), Algérie. Journal Algérien des Régions Arides. N° Spécial, 131–147.Google Scholar
  51. Naqvi, R. H., Mallick, J., Devi, L. M., & Siddiqui, M. A. (2013). Multi-temporal annual soil loss risk mapping employing Revised Universal Soil Loss Equation (RUSLE) model in Nun Nadi Watershed, Uttrakhand (India). Arabian Journal of Geosciences, 6, 4045–4056.  https://doi.org/10.1007/s12517-012-0661-z.CrossRefGoogle Scholar
  52. Ouechtati, S., & Baldassare, G. (2011). Evaluation du transport solide et de l’envasement dans le bassin versant de Siliana (Tunisie): cas des barrages Siliana et Lakhmess. Bulletin of Engineering Geology and the Environment, 70(4), 709–722.  https://doi.org/10.1007/s10064-011-0376-5.CrossRefGoogle Scholar
  53. Pan, J., & Wen, Y. (2014). Estimation of soil erosion using RUSLE in Caijiamiao watershed, China. Natural Hazards, 71, 2187–2205.  https://doi.org/10.1007/s11069-013-1006-2.CrossRefGoogle Scholar
  54. Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C. (2015a). The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54, 438–447.  https://doi.org/10.1016/j.envsci.2015.08.012.CrossRefGoogle Scholar
  55. Panagos, P., Borrelli, P., Meusburger, K., Zanden, A. H., Poesen, J., & Alewell, C. (2015b). Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environmental Science & Policy, 51, 23–34.  https://doi.org/10.1016/j.envsci.2015.03.012.CrossRefGoogle Scholar
  56. Parveen, R., & Kumar, U. (2012). Integrated approach of universal soil loss equation (USLE) and geographical information system (GIS) for soil loss risk assessment in Upper South Koel basin, Jharkhand. Journal of Geographic Information System, 4, 588–596.  https://doi.org/10.4236/jgis.2012.46061.CrossRefGoogle Scholar
  57. Pimentel, D. (2006). Soil erosion: a food and environmental threat. Environment, Development and Sustainability, 8, 119–137.  https://doi.org/10.1007/s10668-005-1262-8.CrossRefGoogle Scholar
  58. Pimentel, D. C., & Kounang, N. (1998). Ecology of soil erosion in ecosystems. Ecosystems, 1, 104–123.  https://doi.org/10.1007/s100219900035.CrossRefGoogle Scholar
  59. Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., Mcnair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267, 1117–1123.  https://doi.org/10.1126/science.267.5201.1117.CrossRefGoogle Scholar
  60. Pitaud, G. (1973) Etude hydrogéologique pour la mise en valeur de la vallée de l’oued Saїda (rapport de synthèse), division ressource hydrique.Google Scholar
  61. Prasannakumar, V., Vijith, H., Abinod, S., & Geetha, N. (2012). Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using revised universal soil loss equation (RUSLE) and geo-information technology. Geoscience Frontiers, 3(2), 209–215.  https://doi.org/10.1016/j.gsf.2011.11.003.CrossRefGoogle Scholar
  62. Remini, B., Hallouche, W., & Achour, B. (2009) L’Algérie : Plus d’un siècle d’envasement des barrages. Chapitre 8. Etat des ressources en eau du Maghreb, UNESCO, 123–142.Google Scholar
  63. Renard, K. G., & Freimund, J. R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology, 157, 287–306.  https://doi.org/10.1016/0022-1694(94)90110-4.CrossRefGoogle Scholar
  64. Renard, K. G., Foster, G. R., Wessies, G. A., & Porter, J. P. (1991). Revised universal soil loss equation. Journal of Soil and Water Conservation, 46, 30–33.Google Scholar
  65. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). Washington, DC: USDA Agricultural Research Services, Agriculture handbook no, 703.Google Scholar
  66. Renard, K. G., Yoder, D., Lightle, D., & Dabney, S. (2011). Universal soil loss equation and revised universal soil loss equation, Handbook of erosion modelling (pp. 137–167). Oxford: Blackwell Publ.Google Scholar
  67. Roche, M. (1963). Hydrologie de Surface. Paris: Gauthier-Villars Editeur 429 p.Google Scholar
  68. Roose, E., Chebbani, R., & Bourougaa, L. (2000). Ravinement en Algérie. Typologie, facteurs de contrôle, quantification et réhabilitation. Sécheresse, 11(4), 317–326.Google Scholar
  69. Sadiki, A., Faleh A., Zêzere J.L., & Mastass, H. (2009). Quantification de l’érosion en nappes dans le bassin versant de l’oued Sahla Rif central Maroc. Cahiers Géographiques, n°6/2009, 59–70.Google Scholar
  70. Singh, G., Chandra, S., & Babu, R. (1981). Soil loss and prediction research in India, Central Soil and Water Conservation Research Training Institute, Bulletin N°T-12/D9.Google Scholar
  71. Stone, R. P., Hilborn, D. (2000). Équation universelle des pertes en Terre (USLE), Ministère de l’agriculture, de l’alimentation et des affaires rurales, Ontario. 08P.Google Scholar
  72. Stone, R. P., & Hilborn, D. (2012). Universal soil loss equation (USLE) factsheet. Ontario: Ministry of Agriculture, Food and Rural Affairs.Google Scholar
  73. Toumi, S., Meddi, M., Mahé, G., & Brou, Y. T. (2013). Cartographie de l’érosion dans le bassin versant de l’Oued Mina en Algérie par télédétection et SIG. Hydrological Sciences Journal, 58(7), 1542–1558.  https://doi.org/10.1080/02626667.2013.824088.CrossRefGoogle Scholar
  74. Tribak, A., El Garouani, A., & Abahrour, A. (2009). Evaluation quantitative de l’érosion hydrique sur les terrains marneux du Pré Rif oriental (Maroc): cas du sous-bassin de l’oued Tlata. Sécheresse, 20(4), 333–337.Google Scholar
  75. Valentin, C., Poesen, J., & Li, Y. (2005). Gully erosion: Impacts, factors and control. Catena, 63(2–3), 132–153.  https://doi.org/10.1016/j.catena.2005.06.001.CrossRefGoogle Scholar
  76. van der Knijff, J. M., Jones R. J. A., & Montanarella, L. (1999). Soil erosion risk assessment in Italy, European Soil Bureau, Research Report EUR 19044 ENp, 58p.Google Scholar
  77. van der Knijff J. M., Jones, R. J. A., & Montanarella, L. (2000). Soil erosion risk assessment in Europe, European Soil Bureau Research Report EUR 19044 ENp, 34p.Google Scholar
  78. Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J., & Smith, C. J. (2009). Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews, 94, 23–38.  https://doi.org/10.1016/j.earscirev.2009.02.003.CrossRefGoogle Scholar
  79. Walling, D. E. (1999). Linking land use, erosion and sediment yield. Hydrobiologia, 410, 223–240.CrossRefGoogle Scholar
  80. Walling, D. E., & Webb, B. W. (1996). Erosion and sediment yield: a global overview. IAHS Publ, 236, 3–19.Google Scholar
  81. Wang, W. Z. (1995). Study on rainfall erosivity in China. Journal of Soil and Water Conservation, 9(4), 5–18.Google Scholar
  82. Wang, G., Wente, S., Gertner, G. Z., & Anderson, A. (2002). Improvement in mapping vegetation cover factor for the universal soil loss equation by geostatistical methods with Landsat thematic mapper images. International Journal of Remote Sensing, 23, 3649–3667.  https://doi.org/10.1080/01431160110114538.CrossRefGoogle Scholar
  83. Wilkinson, B. H., & McElroy, B. J. (2007). The impact of humans on continental erosion and sedimentation. GSA Bulletin, 119, 140–156.  https://doi.org/10.1130/B25899.1.CrossRefGoogle Scholar
  84. Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses, USDA Agricultural Research Services Handbook 537. Washington, DC: USDA 57p.Google Scholar
  85. Yildirim, U. (2011). Assessment of soil erosion at the Deðirmen Creek watershed area, Afyonkarahisar, Turkey, In: Ayvaz M (ed), Proceedings of the International Symposium on Environmental Protection and Planning: Geographic Information Systems (GIS) and Remote Sensing (RS) Applications (ISEPP), 28–29 June 2011, Izmir, 73–80.Google Scholar
  86. Zhang, W., Wei, X., Zheng, J., Zhu, Y., & Zhang, Y. (2012). Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves. Continental Shelf Research, 38, 35–46.  https://doi.org/10.1016/j.csr.2012.02.017.CrossRefGoogle Scholar
  87. Zhao, G., Mu, X., Wen, Z., Wang, F., & Gao, P. (2013). Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24, 499–510.  https://doi.org/10.1002/ldr.2246.Google Scholar
  88. Zhou, P., Luukkanen, O., Tokola, T., & Nieminen, J. (2008). Effect of vegetation cover on soil erosion in a mountainous watershed. Catena, 75(3), 319–325.  https://doi.org/10.1016/j.catena.2008.07.010.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Abderrezak Kamel Toubal
    • 1
  • Mohammed Achite
    • 1
  • Sylvain Ouillon
    • 2
  • Abdelatif Dehni
    • 3
  1. 1.Faculty of Nature and Life Sciences, Water and Environment LaboratoryHassiba Benbouali University of ChlefChlefAlgeria
  2. 2.LEGOS, IRD, CNRS, CNES, UPSUniversité de ToulouseToulouseFrance
  3. 3.Department of Information Systems with Spatial ReferenceCenter for Spatial TechniquesArzewAlgeria

Personalised recommendations