A regional algorithm to model mesozooplankton biomass along the southwestern Bay of Bengal

  • R. Mahesh
  • A. Saravanakumar
  • T. Thangaradjou
  • H. U. Solanki
  • Mini Raman
Article
  • 29 Downloads

Abstract

A three-dimensional regression analysis attempted to model mesozooplankton (MSP) biomass using sea surface temperature (SST) and chlorophyll-a (Chl-a). The study was carried out from January 2014 to July 2015 in the southwestern Bay of Bengal (BoB) and sampling was carried out on board Sagar Manjusha and Sagar Purvi. SST ranged from 26.2 to 33.1 °C while Chl-a varied from 0.04 to 6.09 μg L−1. During the course of the study period, there was a weak correlation (r = 0.32) between SST and Chl-a statistically. MSP biomass varied from 0.42 to 9.63 mg C m−3 and inversely related with SST. Two kinds of approaches were adopted to develop the model by grouping seasonal datasets (four seasonal algorithms) and comprising all datasets (one annual algorithm). Among the four functions used (linear, paraboloid, the Lorentzian and the Gaussian functions), paraboloid model was best suited. The best seasonal and annual algorithms were applied in the synchronous MODIS-derived SST and Chl-a data to estimate the MSP biomass in the southwestern BoB. The modelled MSP biomass was validated with field MSP biomass and the result was statistically significant, showing maximum regression coefficient for the seasonal algorithms (R2 = 0.60; p = 0.627; α = 0.05), than the annual algorithm (R2 = 0.52; p = 0.015, α = 0.05).

Keywords

Mesozooplankton Sea surface temperature Chlorophyll-a MODIS Bay of Bengal 

Notes

Acknowledgements

We thank the Director and Dean, CAS in Marine Biology, Faculty of Marine Sciences and authorities of Annamalai University for providing with the necessary facilities. We also thank the Director, Space Application Centre (SAC), Indian Space Research Organization (ISRO), Govt. of India, Ahmedabad, and the Deputy Director, RESPOND, ISRO HQ, Department of Space, Govt. of India, Bangalore. We are thankful to the Coordinator of RESPOND programme (Project Ref. No. ISRO/RES/4/606/2012–2015). The authors are also thankful to the Indian Space Research Organisation (ISRO) and two anonymous reviewers.

References

  1. Antony, G., Kurup, K. N., & Naomi, T. S. (1997). Zooplankton abundance and secondary production in the seas around Andaman-Nicobar islands. Indian Journal of Fisheries, 44(2), 141–154.Google Scholar
  2. Aoki, I., Komatsu, T., & Hwang, K. (1999). Prediction of response of zooplankton biomass to climatic and oceanic changes. Ecological Modelling, 120, 261–270.CrossRefGoogle Scholar
  3. Avila, T. R., Machado, A. A. S., & Bianchini, A. (2011). Chitobiase of planktonic crustaceans from South Atlantic coast (Southern Brazil): characterization and influence of abiotic parameters on enzyme activity. Journal of Experimental Marine Biology and Ecology, 407, 323–329.CrossRefGoogle Scholar
  4. Banse, K. (1995). Zooplankton: pivotal role in the control of ocean production. ICES Journal of Marine Sciences, 52, 265–277.CrossRefGoogle Scholar
  5. Banse, K., & Mosher, S. (1980). Adult body mass and annual production/biomass relationships of field populations. Ecological Monographs, 50, 355–379.CrossRefGoogle Scholar
  6. Basedow, S. L., Zhou, M., & Tande, K. S. (2013). Secondary production at the polar front, barents sea, August 2007. Journal of Marine Systems, 130, 147–159.CrossRefGoogle Scholar
  7. Bruno, A. W., & Joslin, L. M. (2005). The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28, 815/829, 2005.Google Scholar
  8. Chaturvedi, N. (2003). Intrannual and interannual chlorophyll variability in the Arabian Sea and Bay of Bengal as observed from SeaWifs data from 1997–2000 and its interrelationship with Sea Surface Temperature (SST) derived from NOAA AVHRR, 2005. International Journal of Remote Sensing, 26(17), 3695–3706.CrossRefGoogle Scholar
  9. Chust, G., Allen, J. I., Bopp, L., Schrum, C., Holt, J., Tsiaras, K., Zavatarelli, M., Chifflet, M., Cannaby, H., Dadou, I., Daewel, U., Wakelin, S. L., Machu, E., Pushpadas, D., Butenschon, M., Artioli, Y., Petihakis, G., Smith, C., Garçon, V., Goubanova, K., le Vu, B., Fach, B. A., Salihoglu, B., Clementi, E., & Irigoien, X. (2014). Biomass changes and trophic amplification of plankton in a warmer ocean. Global Change Biology, 20, 2124–2139.CrossRefGoogle Scholar
  10. Das, S., Chanda, A., Dey, S., Banerjee, S., Mukhopadhyay, A., Akhand Akhand A., Ghosh A., Ghosh S., Hazra S., Mitra D., Lotliker A.A., Rao K.H., Choudhury S.B., Dadhwal V.K., (2016). Comparing the spatio-temporal variability of remotely sensed oceanographic parameters between the Arabian Sea and Bay of Bengal throughout a decade. Current Science, 110 (4), 627–639. doi:  https://doi.org/10.18520/cs/v110/i4/627-639.
  11. Eremeev, V. N., Jukov, A. N., Piontkovski, S. A., & Sizov, A. A. (2009). Coupling between interannual fluctuations of the sea surface temperature and zooplankton biomass in the tropical Atlantic Ocean. International Journal of Environmental Stuides., 66(5), 539–546.CrossRefGoogle Scholar
  12. Fernandes, V., & Ramaiah, N. (2013). Mesozooplankton community structure in the upper 1000 m along the western Bay of Bengal during the 2002 fall intermonsoon. Zoological Studies, 52(1), 1–31.CrossRefGoogle Scholar
  13. Fernandes, V., & Ramaiah, N. (2014). Distributional characteristics of surface-layer mesozooplankton in the Bay of Bengal during the 2005 winter monsoon. Indian Journal of Geo-Marine Sciences, 43(1), 1–12.Google Scholar
  14. Franco-Gordo, C., Godinez-Dominguez, E., & Suarez-Morales, E. (2001). Zooplankton biomass variability in the Mexican Eastern tropical Pacific. Pacific Science, 55(2), 191–202.CrossRefGoogle Scholar
  15. Goes, J. I., Caeiro, S., & Gomes, H. R. (1999). Phytoplankton-zooplankton inter-relationships in tropical waters—grazing and gut pigment dynamics. Indian Journal of Marine Sciences, 28, 116–124.Google Scholar
  16. Hirst, A. G., & Bunker, A. J. (2003). Growth of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature and body weight. Indian Journal of Marine Sciences, 48, 1988–2010.Google Scholar
  17. Hirst, A. G., & Lampitt, R. S. (1998). Towards a global model of in-situ weight-specific growth in marine planktonic copepods. Marine Biology, 132, 247–257.CrossRefGoogle Scholar
  18. Huntley, M., & Lopez, M. (1992). Temperature-dependent production of marine copepods: a global synthesis. Americal Naturalist, 140, 201–242.CrossRefGoogle Scholar
  19. Ikeda, T. (1985). Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Marine Biology, 85, 1–11.CrossRefGoogle Scholar
  20. IOCCG. (2000). Remote sensing of ocean colour in coastal, and other optically-complex waters. Reports of the International Ocean Colour Coordinating Group, Sathyendranath, S. (ed.), No. 3, IOCCG, Dartmouth, Canada.Google Scholar
  21. Jagadeesan, L., Jyothibabu, R., Anjusha, A., Arya, P. M., Muraleedharan, K. R., & Sudheesh, K. (2013). Ocean currents structuring the mesozooplankton in the Gulf of Mannar and Palk Bay, southeast coast of India. Progress in Oceanography, 110, 27–48.CrossRefGoogle Scholar
  22. Jeffrey, S. W., Mantoura, R. F. C., & Wright, S. W. (1997). Phytoplankton pigments in oceanography: guidelines to modern methods. Paris: UNESCO Publishing.Google Scholar
  23. Jutla, A.S., Akanda, S., & Islam, S. (2009). Relationship between phytoplankton, sea surface temperature and river discharge in Bay of Bengal. Geophysical Research abstracts; EGU 2009-1091-2, EGU General Assembly 2009; Vienna, Austria.Google Scholar
  24. Kimmerer, W. J. (1987). The theory of secondary production calculations for continuously reproducing populations. Limnology and Oceanography, 32, 1–13.CrossRefGoogle Scholar
  25. Kumari, B., & Babu, K. N. (2009). Provincial nature of chlorophyll and sea surface temperature observed by satellite. International Journal of Remote Sensing, 30(4), 1091–1097.CrossRefGoogle Scholar
  26. Lalli, C. M., & Parsons, T. R. (1997). Biological oceanography: an introduction (2nd ed.). Oxford, U. K.: Elsevier Butterworth-Heinemann.Google Scholar
  27. Madhu, N. V., Maheswaran, P. A., Jyotibabu, R., Sunil, V., Ravichandran, C., Balasubramaniam, T., Gopalakrsishnaan, T. C., & Nair, K. K. C. (2002). Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa). Current Science, 82(12), 1472–1479.Google Scholar
  28. Madhu, N. V., Jyothibabu, R., Mheshwaran, P. A., Gerson, V. J., Gopalakrishnan, T. C., & Nair, K. K. C. (2006). Lack of seasonality in phytoplankton standing stock (chlorophyll a) and production in the western Bay of Bengal. Continental Shelf Research, 26(16), 1868–1883p.  https://doi.org/10.1016/j.csr.2006.06.004.CrossRefGoogle Scholar
  29. Madhupratap, M., Nair, V. R., Nair, S. R. S., & Achuthankutty, C. T. (1981). Zooplankton abundance of the Andaman Sea. Indian Journal of Marine Sciences, 10, 258–261.Google Scholar
  30. Madhupratap, M., Gauns, M., Ramaiah, N., Prasanna Kumar, S., Muraleedharan, P. M., de Douza, S. N., Sardesai, S., & Usha, M. (2003). Biogeochemistry of Bay of Bengal: physical, chemical and primary productivity characteristics of the central and western Bay of Bengal during summer monsoon 2001. Deep-Sea Research II, 50, 881–886.CrossRefGoogle Scholar
  31. Narayanan, M., Vasan, D. T., Bharadwaj, A. K., Thanabalan, P., & Dhileeban, N. (2013). Comparison and validation of sea surface temperature (SST) using MODIS and AVHRR sensor data. International Journal of Remote Sensing and Geoscience, 2(3), 1–7.Google Scholar
  32. Park, W.-G. (2007). Spatial and monthly changes of sea surface temperature, sea surface salinity, chlorophyll a, and zooplankton biomass in southeastern Alaska: implications for suitable conditions for survival and growth of dungeness crab Zoeae. Journal of the Fisheries Science and Technology I, 10(3), 133–142.Google Scholar
  33. Pillai, H. U. K., Jayaraj, K. A., Rafeeq, M., Jayalakshmi, K. J., & Ravichandran, C. (2011). Mesozooplankton distribution near an active volcanic island in the Andaman Sea (Barren Island). Environmental Monitoring and Assessment, 176(1–4), 239–250.CrossRefGoogle Scholar
  34. Poornima, D. P., Sarangi, R. K., Shanthi, R., Thangaradjou, T., & Chauhan, P. (2015). Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data. Environmental Monitoring and Assessment, 187(4), 176.  https://doi.org/10.1007/s10661-015-4340-x.CrossRefGoogle Scholar
  35. Postel, L., Fock, H., & Hagen, W. (2000). Biomass and abundance. In R. P. Harris et al. (Eds.), ICES Zooplankton Methodology Manual (pp. 83–192). San Diego: Academic Press.CrossRefGoogle Scholar
  36. Poulet, S. A., Ianora, A., Laabir, M., & Klein Breteler, W. C. M. (1995). Towards the measurement of secondary production and recruitment in copepods. ICES Journal of Marine Sciences, 52, 359–368.CrossRefGoogle Scholar
  37. Pretorius, M., Huggett, J.A., & Gibbons, M.J. (2016). Summer and winter differences in zooplankton biomass, distribution and size composition in the KwaZulu-Natal Bight, South Africa. In: Roberts MJ, Fennessy ST, Barlow RG (eds), Ecosystem processes in the KwaZulu-Natal Bight. African Journal of Marine Science, 38 (Supplement): S155–S168 .Google Scholar
  38. Rakhesh, M., Raman, A. V., Ganesh, T., Chandramohan, P., & Dehairs, F. (2013). Small copepods structuring mesozooplankton community dynamics in a tropical estuary-coastal system. Estuarine Coastal and Shelf Science, 126, 7), 7–7),22.CrossRefGoogle Scholar
  39. Ramage, C. S. (1984). Climate of the Indian Ocean north of 13° S. In world Survey of climatology, 15: Climates of the Oceans, H. Van loon (ed). Amsterdam: Elsevier Scientific, 603–659.Google Scholar
  40. Salas-de-Leon, D. A., Carbajal, N., Monreal-Gomez, M. A., & Gil-Zurita, A. (2011). Vorticity and mixing induces by the barotropic M2 tidal current and zooplankton biomass distribution in the Gulf of California. Journal of Sea Research, 66, 143–153.CrossRefGoogle Scholar
  41. Sarangi, R. K., & Devi, K. N. (2016). Space based observation of chlorophyll, sea surface temperature, nitrate and sea surface height anomaly over the Bay of Bengal and Arabian Sea. Advances in Space Research, 59, 33–44.  https://doi.org/10.1016/j.asr.2016.08.038.CrossRefGoogle Scholar
  42. Sarangi, R. K., Thangaradjou, T., Poornima, D., Shanthi, R., Saravana Kumar, A., & Balasubramanian, T. (2015). Seasonal nitrate algorithms for the Southwest Bay of Bengal water using in situ measurements for satellite remote-sensing applications. Journal of Coastal Research, 31(2), 398–406.CrossRefGoogle Scholar
  43. Sardessai, S., Ramaiah, N., Prasannakumar, S., & DeSouza, S. N. (2007). Influence of environmental forcings on the seasonality of dissolved oxygen and nutrients in the Bay of Bengal. Journal of Marine Research, 65(2), 301–316.CrossRefGoogle Scholar
  44. Solanki, H. U., Dwivedi, R. M., Nayak, S. R., Somvanshi, V. S., Gulati, D. K., & Pattnayak, S. K. (2003). Fishery forecast using OCM chlorophyll concentration and AVHRR SST: validation results off Gujarat coast, India. International Journal of Remote Sensing, 24(18), 3691–3699.CrossRefGoogle Scholar
  45. Solanki, H. U., Chauhan, R., George, L. B., & Dwivedi, R. M. (2015). Development of bio-physical model for the estimation of zooplankton biomass production in the Arabian Sea using remotely sensed oceanographic variables. Indian Journal of Marine Sciences, 44(3), 348–353.Google Scholar
  46. Srichandan, S., Panda, C. R., & Rout, N. C. (2013). Seasonal distribution of zooplankton in Mahanadi estuary (Odisha), east coast of India: a taxonomical approach. International Journal of Zoological Research, 9(1), 17–31.CrossRefGoogle Scholar
  47. Steinberg, D. K., Lomas, M. W, & Cope, J.S. (2012). Long-term increase in mesozooplankton biomass in the Sargasso Sea: linkage to climate and implications for food web dynamics and biogeochemical cycling, Global Biogeochemical Cycles, 26, GB1004  https://doi.org/10.1029/2010GB004026.
  48. Strickland, J.D.H., & Parsons, T.R. (1972). A practical handbook of sea water analysis, 2nd ed. Bulletin Fisheries Research of Board of Canada, 167, p. 310.Google Scholar
  49. Strömberg, K. H. P., Smyth, T. J., Allen, J. I., Pitois, S., & O'Brien, T. D. (2009). Estimation of global zooplankton biomass from satellite ocean colour. Journal of Marine Systems, 78, 18–27.CrossRefGoogle Scholar
  50. Turner, J. (2002). Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquatic Microbial Ecology, 27, 57–102.CrossRefGoogle Scholar
  51. Vidya, P. J., Prasanna Kumar, S., Gauns, M., Verenkar, A., Unger, D., & Ramaswamy, V. (2013). Influence of physical and biological processes on the seasonal cycle of biogenic flux in the equatorial Indian Ocean. Biogeosciences, 10, 7493–7507.CrossRefGoogle Scholar
  52. Williams, G. N., Dogliotti, A. I., Zaidman, P., Solis, M., Narvarte, M. A., Gonzalez, R. C., Estevez, J. L., & Gagliardini, D. A. (2013). Assessment of remotely sensed sea-surface temperature and chlorophyll-a concentration in San Matías Gulf (Patagonia, Argentina). Cont Continental Shelf Research, 52, 159–171.CrossRefGoogle Scholar
  53. Wishner, K. F., Gowing, M. M., & Gelfman, C. (1998). Mesozooplankton biomass in the upper 1000m in the Arabian Sea: overall seasonal response and geographic patterns, and relationship to oxygen gradients. Deep-Sea Research II, 45, 2405–2432.CrossRefGoogle Scholar
  54. Yebra, L., & Hernández-León, S. (2004). Aminoacyl-tRNA synthetases activity as a growth index in zooplankton. Journal of Plankton Research, 26, 351–356.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • R. Mahesh
    • 1
    • 2
  • A. Saravanakumar
    • 1
  • T. Thangaradjou
    • 1
    • 3
  • H. U. Solanki
    • 4
  • Mini Raman
    • 4
  1. 1.Centre for Advanced Study in Marine Biology, Faculty of Marine SciencesAnnamalai UniversityPorto NovoIndia
  2. 2.National Centre for Sustainable Coastal ManagementMinistry of Environment, Forest & Climate ChangeChennaiIndia
  3. 3.Science and Engineering Research Board, Department of Science & TechnologyNew DelhiIndia
  4. 4.Space Application CentreIndian Space Research OrganisationAhmedabadIndia

Personalised recommendations