Advertisement

Predicting soil water content at − 33 kPa by pedotransfer functions in stoniness 1 soils in northeast Venezuela

  • M. C. PinedaEmail author
  • J. Viloria
  • J. A. Martínez-Casasnovas
  • A. Valera
  • D. Lobo
  • L. C. Timm
  • L. F. Pires
  • D. Gabriels
Article
  • 140 Downloads

Abstract

Soil water content is a key property in the study of water available for plants, infiltration, drainage, hydraulic conductivity, irrigation, plant water stress and solute movement. However, its measurement consumes time and, in the case of stony soils, the presence of stones difficult to determinate the water content. An alternative is the use of pedotransfer functions (PTFs), as models to predict these properties from readily available data. The present work shows a comparison of different widely used PTFs to estimate water content at-33 kPa (WR-33kPa) in high stoniness soils. The work was carried out in the Caramacate River, an area of high interest because the frequent landslides worsen the quality of drinking water. The performance of all evaluated PTFs was compared with a PTF generated for the study area. Results showed that the Urach’s PTF presented the best performance in relation to the others and could be used to estimate WR-33kPa in soils of Caramacate River basin. The calculated PTFs had a R2 of 0.65. This was slightly higher than the R2 of the Urach’s PTF. The inclusion of the rock fragment volume could have the better results. The weak performance of the other PTFs could be related to the fact that the mountain soils of the basin are rich in 2:1 clay and high stoniness, which were not used as independent variables for PTFs to estimate the WR-33kPa.

Keywords

Multiple linear regression Particle size distribution Soil stoniness Soil water content 

Notes

Acknowledgments

The authors are grateful to the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy, the Venezuelan Organic Law for Science and Technology (LOCTI), and the Council of Scientific and Humanistic Development (CDCH) of the Universidad Central de Venezuela, the Universidad de Lleida (Catalonia, Spain), and the Brazilian Research Council (CNPq) for the scholarships and funding.

References

  1. Abbasi, Y., Ghanbarian-Alavijeh, B., Liaghat, A. M., & Shorafa, M. (2011). Evaluation of pedotransfer functions for estimating soil water retention curve of saline and saline-alkali soils of Iran. Pedosphere, 21(2), 230–237.CrossRefGoogle Scholar
  2. Al Majou, H., Bruand, A., Duval, O., & Cousin, I. (2007). Variation of the water retention properties of soils: validity of class-pedotransfer functions. Comptes Rendus Geoscience, 339(9), 632–639.CrossRefGoogle Scholar
  3. Al Majou, H., Bruand, A., Duval, O., Le Bas, C., & Vautier, A. (2008a). Prediction of soil water retention properties after stratification by combining texture, bulk density and the type of horizon. Soil Use and Management, 24, 383–391.CrossRefGoogle Scholar
  4. Al Majou, H., Bruand, A., & Duval, O. (2008b). Use of in situ volumetric water content to improve prediction of soil water retention properties. Canadian Journal of Soil Science, 88, 522–541.CrossRefGoogle Scholar
  5. Ali Ghorbania, M., Shamshirband, S., Zare Haghie, D., Azania, A., BonakdarifIsa, H., & Ebteha, I. (2017). Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil and Tillage Research., 172, 32–38.CrossRefGoogle Scholar
  6. Arruda, F. B.,Zullo Junior, J. & Oliveira J. B. (1987). Parâmetros de solo para o cálculo da água disponível com base na textura do solo. Revista Brasileira de Ciência do Solo. (in portuguese) 11, pp. 11–15.Google Scholar
  7. Baker, L. (2008). Development of class pedotransfer functions of soil water retention—a refinement. Geoderma, 144(1), 225–230.CrossRefGoogle Scholar
  8. Bastet, G., Bruand, A., Voltz, M., Bornand, M., & Quétin, P. (1999). Performance of available pedotransfer functions for predicting the water retention properties of French soils. In M. T. Van Genuchten, F. J. Leij, & L. Wu (Eds.), Proceedings of the international workshop on characterization and measurement of the hydraulic properties of unsaturated porous media, parts 1 and 2 (pp. 981–992). Riverside: University of California.Google Scholar
  9. Bell, M. A., & Van Keulen, H. (1995). Soil pedotransfer functions for four Mexican soils. Soil Science Society of America, 59, 865–878.CrossRefGoogle Scholar
  10. Botula, Y., Van Ranst, E., & Cornelis, W. (2014). Pedotransfer functions to predict water retention for soils of the humid tropics: a review. Revista Brasileira de Ciência do Solo. (in portuguese), 38, 679–698.CrossRefGoogle Scholar
  11. Bouma, J. & Van Lanen, H. A. J. (1987). Transfer functions and threshold values: from land characteristics to land qualities. In: K.J. Beek et al (ed.). Quantified Land Evaluation. Proceedings of a Workshop, ISSS and SSSA. ITC Publications, Enschede. p. 106110. Google Scholar
  12. Büchter, B., Leuenberger, J., Wierenga, P. J., & Richard, F. (1984). Preparation of large core samples from stony soils. Soil Science Society of America Journal, 48, 1460–1462.CrossRefGoogle Scholar
  13. Cong, Z., Lu, H., & Ni, G. (2014). A simplified dynamic method for field capacity estimation and its 286 parameter analysis. Water Science and Engineering, 7(4), 351–362.Google Scholar
  14. Coppola, A., Comegna, A., Dragonetti, G., Lamaddalena, N., Kader, A. M., & Comegna, V. (2011). Average moisture saturation effects on temporal stability of soil water spatial distribution at field scale. Soil &Tillage Research, 114, 155–164.CrossRefGoogle Scholar
  15. Coppola, A., Dragonetti, G., Comegna, A., Lamaddalena, N., Caushi, B., Haikal, M. A., & Basile, A. (2013). Measuring and modeling water content in stony soils. Soil &Tillage Research, 128, 9–22.CrossRefGoogle Scholar
  16. Delgado, F., & Barreto, L. (1988). Una aproximación matemática para la elaboración de curvas de retención de humedad en suelos representativos de los Llanos Occidentales. Revista UNELLEZ de Ciencia y Tecnología.(inSpanish), 6(1-2), 45–50.Google Scholar
  17. Dijkerman, J. C. (1988). An ustult-aquult-tropept catena in Sierra Leone, West Africa, II. Land qualities and land evaluation. Geoderma, 42, 29–49.CrossRefGoogle Scholar
  18. Frison, A., Cousin, I., Montagne, D., & Cornu, S. (2009). Soil hydraulic properties in relation to local rapid soil changes induced by field drainage: a case study. European Journal of Soil Science, 60, 662–670.CrossRefGoogle Scholar
  19. Gaiser, T., Graef, F., & Cordeiro, J. C. (2000). Water retention characteristics of soils with contrasting clay mineral composition in semi-arid tropical regions. Australian Journal of Soil Research, 38, 523–536.CrossRefGoogle Scholar
  20. Gee, G. W. & Or, D. (2002). Particle-size analysis. In: J. H. Dane and G. C. Topp (Ed.) Methods of soil analysis. Part 4. SSSA Book series N° 5, Madison: SSSA, pp. 255-293.Google Scholar
  21. Grossman, R.B. & Reinsch, T.G.(2002). Bulk density and linear extensibility. p. 201–228. In J. H. Dane and G. C. Topp (ed.) Methods of soil analysis. Part 4. SSSA book Ser. 5. Madison: SSSA.Google Scholar
  22. He, Y., DeSutter, T., Casey, F., Clay, D., Franzen, D., & Steele, D. (2015). Field capacity water as influenced by Na and EC: Implications for subsurface drainage. Geoderma, 245–246, 83–88.CrossRefGoogle Scholar
  23. Heanes, D. L. (1984). Determination of total organic-C in soils by an improved chromic acid digestion and spectrophotometric procedure. Communications in Soil Science and Plant Analysis, 15, 1191–1213.CrossRefGoogle Scholar
  24. Khetdana, C., Chittamarta, N., Tawornprueka, S., Kongkaewa, T., Onsamrarna, W., & Garréc, G. (2017). Influence of rock fragments on hydraulic properties of ultisols in Ratchaburi Province, Thailand. Geoderma Regional, 10, 21–28.CrossRefGoogle Scholar
  25. Lal, R. (1979). Physical properties and moisture retention characteristics of some Nigerian soils. Geoderma, 21, 209–223.CrossRefGoogle Scholar
  26. Li, D., Gao, G., Shao, M., & Fu, B. (2016). Predicting available water of soil from particle-size distribution and bulk density in an oasis–desert transect in northwestern China.Journal of Hydrology, 538, 539–550.Google Scholar
  27. Liao, K. H., Xu, S. H., Wu, J. C., Ji, S. H., & Lin, Q. (2011). Assessing soil water retention characteristics and their spatial variability using pedotransfer functions. Pedosphere, 21(4), 413–422.CrossRefGoogle Scholar
  28. Ma, D. H., & Shao, M. A. (2008). Simulating infiltration into stony soils with adual-porosity model. Eur. J. 312. Soil Science, 59(5), 950–959.CrossRefGoogle Scholar
  29. McBratney, A. B., Minasny, B., Cattle, S. R., & Vervoort, R. W. (2002). From pedotransfer functions to soil inference systems. Geoderma, 109, 41–73.CrossRefGoogle Scholar
  30. McCormack, D. E., Young, K. K. & Darby, G. M. (1982). Rock fragments and the K factor of the universal soil loss equation. Chapter 8. In erosion and productivity of soil containing rock fragments.SSSA Special Publication.13. pp. 76-79.Google Scholar
  31. Medeiros, J. C., Cooper, M., Dalla Rosa, J., Grimaldi, M., & Coquet, Y. (2014). Assessment of pedotransfer functions for estimating soil water retention curves for the amazon region. Revista Brasileira de Ciência do Solo, 38, 730–743.CrossRefGoogle Scholar
  32. Mi, M., Shao, M., & Liu, B. (2016). Effect of rock fragments content on water consumption, biomass and 322 water-use efficiency of plants under different water conditions. Ecological Engineering, 94, 574–582.CrossRefGoogle Scholar
  33. Minasny, B., & Hartemink, A. E. (2011). Predicting soil properties in the tropics. Earth-Science Reviews, 106, 52–62.CrossRefGoogle Scholar
  34. Nasri, B., Fouché, O., & Torri, D. (2015). Coupling published pedotransfer functions for the estimation of bulk density and saturated hydraulic conductivity in stony soils. Catena, 131, 99–108.CrossRefGoogle Scholar
  35. Nebel, A. L. C., Timm, L. C., Cornelis, W., Gabriels, D., Reichardt, K., Aquino, L. S., Pauletto, E. A., & Reinert, D. J. (2010). Pedotransfer functions related to spatial variability of water retention attributes for lowland soils. Revista Brasileira de Ciência do Solo, 34, 669–680.CrossRefGoogle Scholar
  36. Oliveira, L. B., Ribeiro, M. R., Jacomine, P. K. T., Rodrigues, J. V. V., & Marques, F. A. (2002). Funções de Pedotransferência para predição da umidad e retida a potenciais específicos em solos do Estado de Pernambuco. Revista Brasileira de Ciência do Solo. (in portuguese), 26, 315–323.CrossRefGoogle Scholar
  37. Patil, N. G., & Singh, S. K. (2016). Pedotransfer functions for estimating soil hydraulic properties: a review. Pedosphere, 26(4), 417–430.CrossRefGoogle Scholar
  38. Peraza, J. E. S. (2003). Retenção de água e pedofunções para solos do Rio Grande do Sul. Santa Maria, Universidade Federal de Santa Maria. (in portuguese) 118p. (Dissertação de Mestrado).Google Scholar
  39. Pidgeon, J. D. (1972). The measurement and prediction of available water capacity of Ferrallitic soils in Uganda. Journal of Soil Science, 23, 431–444.CrossRefGoogle Scholar
  40. Pineda, C., & Viloria, J. (1997). Funciones de pedotransferencia para estimar la retención de humedad en suelos de la Cuenca del Lago de Valencia. Venesuelos. (in Spanish), 5(1 y 2), 39–45.Google Scholar
  41. Pineda, M. C., Elizalde, G., & Viloria, J. (2011). Relación suelo-paisaje en un sector de la Cuenca del Río Caramacate, Aragua, Venezuela. Revista de la Facultad de Agronomía. (in Spanish), 37(1), 27–37.Google Scholar
  42. Rao, N. H. (1998). Grouping water storage properties of Indian soils for soil water balance model applications. Agricultural Water Management, 36, 99–109.CrossRefGoogle Scholar
  43. Rawls, W., Brakensiek, D., & Saxton, K. (1982). Estimation of soil water properties. Trans American Society of Agricultural Engineers, 25, 1316–1320.CrossRefGoogle Scholar
  44. Reichert, J. M., Albuquerque, J. A., Kaiser, D. R., Reinert, D. J., Urach, F. L., & Carlesso, R. (2009). Estimation of water retention and availability in soils of Rio Grande do Sul. Revista Brasileira de Ciência do Solo. (in portuguese), 33(6), 1547–1560.  https://doi.org/10.1590/S0100-06832009000600004.CrossRefGoogle Scholar
  45. Richards, L. A. (1948). Porous plate apparatus for measuring moisture retention and transmission by soils. Soil Science., 66, 105–110.CrossRefGoogle Scholar
  46. Soil Survey Staff (2010). Keys to soil taxonomy. Washington, DC. In: U.S.D.A.-N.R.C. Service (Ed.), pp. 346.Google Scholar
  47. Tetegan, M., Nicoullaud, B., Baize, D., Bouthierb, A., & Cousin, I. (2011). The contribution of rock fragments to the available water content of stony soils: proposition of new pedotransfer functions. Geoderma, 165, 40–49.CrossRefGoogle Scholar
  48. Tetegan, M., Richer de Forges, A. C., Verbeque, B., Nicoullaud, B., Desbourdes, C., Bouthier, A., Arrouays, D., & Cousin, I. (2015). The effect of soil stoniness on the estimation of water retention properties of soils: a case study from central France. Catena, 129, 95–102.CrossRefGoogle Scholar
  49. Tomasella, J., & Hodnett, M. G. (1998). Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil Science., 163(3), 190–202.CrossRefGoogle Scholar
  50. Tukey, J. W. (1977). Exploratory data analysis. Reading: Addison-Wesley.Google Scholar
  51. Urbaní, F. & Rodríguez, J. A. (2003). Atlas Geológico de la Cordillera de la Costa, Venezuela. Co edición FUNVISIS y UCV, iii + 146 p. (146 mapas a escala 1:25 000).Google Scholar
  52. Van Wesemael, B., Poesen, J., Kosmas, C. S., Danalatos, N. G., & Nachtergaele, J. (1996). Evaporation from cultivated soils containing rock fragments. Journal of Hydrology, 182(1), 65–82.CrossRefGoogle Scholar
  53. Wilding, L. P., & Drees, L. R. (1983). Spatial variability and pedology. In L. P. Wilding, N. E. Smeck, & G. F. Hall (Eds.), Pedogenesis and soil taxonomy: 1. concepts and interactions (pp. 83–116). Amsterdam: Elsevier.CrossRefGoogle Scholar
  54. Xiangsheng, Y., Guosheng, L., & Yanyu, Y. (2013). Comparison of three methods to develop pedotransfer functions for the saturated water content and field water capacity in permafrost region. Cold Regions Science and Technology, 88, 10–16.CrossRefGoogle Scholar
  55. Zhuang, J., Jin, Y., & Miyazaki, T. (2001). Estimating water retention characteristics from soil particle size distribution using a non-similar media concept. Soil Science, 166, 308–321.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • M. C. Pineda
    • 1
    Email author
  • J. Viloria
    • 1
  • J. A. Martínez-Casasnovas
    • 2
  • A. Valera
    • 3
  • D. Lobo
    • 1
  • L. C. Timm
    • 4
  • L. F. Pires
    • 5
  • D. Gabriels
    • 6
  1. 1.Instituto de Edafología, Facultad de AgronomíaUniversidad Central de VenezuelaMaracayVenezuela
  2. 2.Department of Environment and Soil SciencesUniversity of LleidaLleidaSpain
  3. 3.Universidad Nacional Experimental de los Llanos Centrales Rómulo GallegosSan Juan de los MorrosVenezuela
  4. 4.Department of Rural Engineering, Faculty of AgronomyFederal University of PelotasCapão do LeãoBrazil
  5. 5.Physics DepartmentState University of Ponta GrossaPonta GrossaBrazil
  6. 6.UNESCO Chair on Eremology, Department of Soil ManagementGhent UniversityGhentBelgium

Personalised recommendations