Advertisement

A meta-analysis of pesticide loss in runoff under conventional tillage and no-till management

  • Daniel Elias
  • Lixin Wang
  • Pierre-Andre JacintheEmail author
Article

Abstract

Global agricultural intensification has led to increased pesticide use (37-fold from 1960 to 2005) and soil erosion (14% since 2000). Conservation tillage, including no-till (NT), has been proposed as an alternative to conventional plow till (PT) to mitigate soil erosion, but past studies have reported mixed results on the effect of conservation tillage on pesticide loss. To explore the underlying factors of these differences, a meta-analysis was conducted using published data on pesticide concentration and load in agricultural runoff from NT and PT fields. Peer-reviewed articles (1985–2016) were compiled to build a database for analysis. Contrary to expectations, results showed greater concentration of atrazine, cyanazine, dicamba, and simazine in runoff from NT than PT fields. Further, we observed greater load of dicamba and metribuzin, but reduced load of alachlor from NT fields. Overall, the concentration and the load of pesticides were greater in runoff from NT fields, especially pesticides with high solubility and low affinity for solids. Thus, NT farming affects soil properties that control pesticide retention and interactions with soils, and ultimately their mobility in the environment. Future research is needed for a more complete understanding of pesticide-soil interactions in NT systems. This research could inform the selection of pesticides by farmers and improve the predictive power of pesticide transport models.

Keywords

Tillage Octanol-water partition coefficient Solubility pH Soil organic matter Texture 

Notes

Acknowledgments

This research was supported by grants from the Indiana Water Resources Research Center (104B grant, 4107-73618) and USDA-NIFA (2014-51130-22492). The authors thank Dr. Stefani Daryanto for assistance with the MetaWin software package.

References

  1. Aguiar, T. R., Bortolozo, F. R., Hansel, F. A., Rasera, K., & Ferreira, M. T. (2015). Riparian buffer zones as pesticide filters of no-till crops. Environmental Science and Pollution Research International, 22(14), 10618–10626..Google Scholar
  2. Alletto, L., Coquet, Y., Benoit, P., Heddadj, D., & Barriuso, E. (2010). Tillage management effects on pesticide fate in soils. A review. Agronomy for Sustainable Development, 30(2), 367–400.Google Scholar
  3. Basta, N. T., Huhnke, R. L., & Stiegler, J. H. (1997). Atrazine runoff from conservation tillage systems: a simulated rainfall study. Journal of Soil and Water Conservation, 52(1), 44–48.Google Scholar
  4. Battaglin, W. A., Sandstrom, M. W., Kuivila, K. M., Kolpin, D. W., & Meyer, M. T. (2011). Occurrence of azoxystrobin, propiconazole, and selected other fungicides in US streams, 2005–2006. Water, Air, & Soil Pollution, 218(1–4), 307–322.Google Scholar
  5. Baughman, T. A., Shaw, D. R., Webster, E. P., & Boyette, M. (2001). Effect of cotton (Gossypium hirsutum) tillage systems on off-site movement of fluometuron, norflurazon, and sediment in runoff. Weed Technology, 15(1), 184–189.Google Scholar
  6. Berenzen, N., Lentzen-Godding, A., Probst, M., Schulz, H., Schulz, R., & Liess, M. (2005). A comparison of predicted and measured levels of runoff-related pesticide concentrations in small lowland streams on a landscape level. Chemosphere, 58(5), 683–691.Google Scholar
  7. Blackshaw, R. E., Larney, F. O., Lindwall, C. W., & Kozub, G. C. (1994). Crop rotation and tillage effects on weed populations on the semi-arid Canadian prairies. Weed Technology, 8(2), 231–237.Google Scholar
  8. Bollag, J. M., Myers, C. J., & Minard, R. D. (1992). Biological and chemical interactions of pesticides with soil organic matter. Science of the Total Environment, 123, 205–217.CrossRefGoogle Scholar
  9. Bruand, A., & Tessier, D. (2000). Water retention properties of the clay in soils developed on clayey sediments: significance of parent material and soil history. European Journal of Soil Science, 51(4), 679–688.Google Scholar
  10. Bundy, L. G., Andraski, T. W., & Powell, J. M. (2001). Management practice effects on phosphorus losses in runoff in corn production systems. Journal of Environmental Quality, 30(5), 1822–1828.Google Scholar
  11. Carter, A. (2000). How pesticides get into water-and proposed reduction measures. Pesticide Outlook, 11(4), 149–156.Google Scholar
  12. Coche, A. G. (1985). Simple methods for aquaculture: soil and freshwater fish culture. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  13. Conservation Technology Information Center. (2016a). Crop Residue Management Survey – 2006. http://www.ctic.org/media/pdf/2006%20CRM%20summary.pdf. Accessed 1 December 2016.
  14. Conservation Technology Information Center. (2016b). 2008 Amendment to the National Crop Residue Management Survey Summary. http://www.ctic.org/media/pdf/National%20Summary%202008%20(Amendment).pdf. Accessed 1 December 2016.
  15. Cope, O. B. (1966). Contamination of the freshwater ecosystem by pesticides. Journal of Applied Ecology, 3, 33–44.Google Scholar
  16. Curtis, P. S., & Wang, X. (1998). A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia, 113(3), 299–313.Google Scholar
  17. Daryanto, S., Wang, L., & Jacinthe, P. A. (2015). Global synthesis of drought effects on food legume production. PloS one, 10(6), pe0127401.CrossRefGoogle Scholar
  18. Daryanto, S., Wang, L., & Jacinthe, P. A. (2017). Impacts of no-tillage management on nitrate loss from corn, soybean and wheat cultivation: a meta-analysis. Scientific Reports, 7(1), 12117.Google Scholar
  19. Donigian, A. S., & Carsel, R. F. (1987). Modeling the impact of conservation tillage practices on pesticide concentrations in ground and surface waters. Environmental Toxicology and Chemistry, 6(4), 241–250.Google Scholar
  20. Duiker, S. W., & Myers, J. C. (2016). Better soils with the no-till system: a publication to help farmers understand the effects of no-till systems on the soil. Harrisburg, Pennsylvania, USA: Pennsylvania Conservation Partnership. https://vtechworks.lib.vt.edu/bitstream/handle/10919/68815/4533_Duiker2005_better_soils_with_noTill.pdf?sequence=1. Accessed in April 1 2017.
  21. Elias, D., & Bernot, M. J. (2014). Effects of atrazine, metolachlor, carbaryl and chlorothalonil on benthic microbes and their nutrient dynamics. PloS one, 9(10), pe109190.CrossRefGoogle Scholar
  22. Elliott, J. A., Cessna, A. J., Nicholaichuk, W., & Tollefson, L. C. (2000). Leaching rates and preferential flow of selected herbicides through tilled and untilled. Journal of Environmental Quality, 29(5), 1650–1656.  https://doi.org/10.2134/jeq2000.00472425002900050036x.CrossRefGoogle Scholar
  23. Felsot, A. S., Mitchell, J. K., & Kenimer, A. L. (1990). Assessment of management practices for reducing pesticide runoff from sloping cropland in Illinois. Journal of Environmental Quality, 19(3), 539–545.  https://doi.org/10.2134/jeq1990.00472425001900030031x.CrossRefGoogle Scholar
  24. Fernandez-Cornejo, J., Nehring, R. F., Osteen, C., Wechsler, S., Martin, A., & Vialou, A. (2014). Pesticide use in US agriculture: 21 selected crops, 1960–2008. https://www.ers.usda.gov/webdocs/publications/43854/46734_eib124.pdf?v=41830. Accessed 1 November 2017.
  25. Fiener, P., Auerswald, K., & Van Oost, K. (2011). Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments—a review. Earth-Science Reviews, 106(1), 92–104.Google Scholar
  26. Fuller, J. B., & Hester, K. (1999). Comparing the sample-weighted and unweighted meta-analysis: an applied perspective. Journal of Management, 25(6), 803–828.Google Scholar
  27. Gallagher, E. P., Canada, A. T., & Di Giulio, R. T. (1992). The protective role of glutathione in chlorothalonil-induced toxicity to channel catfish. Aquatic Toxicology, 23(3), 155–168.Google Scholar
  28. Gaynor, J., & Bissonnette, D. (1992). The effect of conservation tillage practices on the losses of phosphorus and herbicides in surface and subsurface drainage waters. Ontario: Agriculture Canada Research Station.Google Scholar
  29. Gaynor, J. D., MacTavish, D. C., & Fidlay, W. I. (1995). Organic chemicals in the environment. Journal of Environmental Quality, 24(2), 246–256.Google Scholar
  30. Gebhardt, M. R., Daniel, T. C., Schweizer, E. E., & Allmaras, R. R. (1985). Conservation tillage. Science, 230(4726), 625–631.Google Scholar
  31. Glenn, S., & Angle, J. S. (1987). Atrazine and simazine in runoff from conventional and no-till corn watersheds. Agriculture, Ecosystems & Environment, 18(4), 273–280.Google Scholar
  32. Grube, A., Donaldson, D., Kiely, T., & Wu, L. (2011). Pesticides industry sales and usage. Washington: U.S. EPA.Google Scholar
  33. Gurevitch, J., & Hedges, L. V. (1999). Statistical issues in ecological meta-analyses. Ecology, 80(4), 1142–1149.Google Scholar
  34. Hall, J. K., & Mumma, R. O. (1994). Dicamba mobility in conventionally tilled and non-tilled soil. Soil and Tillage Research, 30(1), 3–17.Google Scholar
  35. Hall, J. K., Murray, M. R., & Hartwig, N. L. (1989). Herbicide leaching and distribution in tilled and untilled soil. Journal of Environmental Quality, 18(4), 439–445.Google Scholar
  36. Hall, J. K., Mumma, R. O., & Watts, D. W. (1991). Leaching and runoff losses of herbicides in a tilled and untilled field. Agriculture, Ecosystems & Environment, 37(4), 303–314.Google Scholar
  37. Hansen, N. C., Moncrief, J. F., Gupta, S. C., Capel, P. D., & Olness, A. E. (2001). Herbicide banding and tillage system interactions on runoff losses of alachlor and cyanazine. Journal of Environmental Quality, 30(6), 2120–2126.Google Scholar
  38. Hayes, T. B., Stuart, A. A., Mendoza, M., Collins, A., Noriega, N., Vonk, A., Johnston, G., Liu, R., & Kpodzo, D. (2006). Characterization of atrazine-induced gonadal malformations in African clawed frogs (Xenopus laevis) and comparisons with effects of an androgen antagonist (cyproterone acetate) and exogenous estrogen (17-beta-estradiol): support for the demasculinization/feminization hypothesis. Environmental Health Perspectives, 114(Suppl 1), 134.CrossRefGoogle Scholar
  39. Hernández, A. F., Parrón, T., Tsatsakis, A. M., Requena, M., Alarcón, R., & López-Guarnido, O. (2013). Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology, 307, 136–145.Google Scholar
  40. Holland, J. M. (2004). The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agriculture, Ecosystems & Environment, 103(1), 1–25.Google Scholar
  41. Horneck, D. A., Sullivan, D. M., Owen, J. S., & Hart, J. M. (2011). Soil test interpretation guide. Oregon: Oregon State University, Extension Service.Google Scholar
  42. Houck, O. A. (2002). The clean water act TMDL program: law, policy, and implementation. Washington, D.C. USA: Environmental Law Institute.Google Scholar
  43. Isensee, A. R., & Sadeghi, A. M. (1993). Impact of tillage practice on runoff and pesticide transport. Journal of Soil and Water Conservation, 48(6), 523–527.Google Scholar
  44. Kah, M., & Brown, C. D. (2006). Adsorption of ionisable pesticides in soils. In Reviews of environmental contamination and toxicology (pp. 149–217). New York: Springer.Google Scholar
  45. Karlen, D. L., Wollenhaupt, N. C., Erbach, D. C., Berry, E. C., Swan, J. B., Eash, N. S., & Jordahl, J. L. (1994). Long-term tillage effects on soil quality. Soil and Tillage Research, 32(4), 313–327.Google Scholar
  46. Kenimer, A. L., Mostaghimi, S., Young, R. W., Dillaha, T. A., & Shanholtz, V. O. (1987). Effects of residue cover on pesticide losses from conventional and no-tillage systems. Transactions of the ASAE, 30(4), 953–959.Google Scholar
  47. Kessel, C., Venterea, R., Six, J., Adviento-Borbe, M. A., Linquist, B., & Groenigen, K. J. (2013). Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis. Global Change Biology, 19(1), 33–44.Google Scholar
  48. Knowler, D., & Bradshaw, B. (2007). Farmers’ adoption of conservation agriculture: a review and synthesis of recent research. Food Policy, 32(1), 25–48.Google Scholar
  49. Koskinen, W. C., & Clay, S. A. (1997). Factors affecting atrazine fate in north central US soils. In Reviews of environmental contamination and toxicology (pp. 117–165). New York: Springer.Google Scholar
  50. Larson, S. J., Gilliom, R. J. & Capel, P. D. (1999). Pesticides in streams of the United States: initial results from the national water-quality assessment program (No. 98-4222). Sacramento, California, USA: US Department of the Interior, US Geological Survey; Branch of Information Services.Google Scholar
  51. Lennartz, B., Louchart, X., Voltz, M., & Andrieux, P. (1997). Diuron and simazine losses to runoff water in Mediterranean vineyards. Journal of Environmental Quality, 26(6), 1493–1502.Google Scholar
  52. Levanon, D., Codling, E. E., Meisinger, J. J., & Starr, J. L. (1993). Mobility of agrochemicals through soil from two tillage systems. Journal of Environmental Quality, 22(1), 155–161. .Google Scholar
  53. Lewis, K. A., Tzilivakis, J., Warner, D., & Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050–1064.Google Scholar
  54. Linde, C.D. (1994). Physico-chemical properties and environmental fate of pesticides. Environmental Hazards Assessment Program, State of California, Environmental Protection Agency, USA. http://www.cdpr.ca.gov/docs/emon/pubs/ehapreps/eh9403.pdf. Accessed 1 December 2016.
  55. Locke, M. A., Zablotowicz, R. M., Reddy, K. N., & Steinriede, R. W. (2008). Tillage management to mitigate herbicide loss in runoff under simulated rainfall conditions. Chemosphere, 70(8), 1422–1428.Google Scholar
  56. Logan, T. J., Lal, R., & Dick, W. A. (1991). Tillage systems and soil properties in North America. Soil and Tillage Research, 20(2–4), 241–270.Google Scholar
  57. Logan, T. J., Eckert, D. J., & Beak, D. G. (1994). Tillage, crop and climatic effects of runoff and tile drainage losses of nitrate and four herbicides. Soil and Tillage Research, 30(1), 75–103.Google Scholar
  58. Lu, X., Wang, L., & McCabe, M. F. (2016). Elevated CO2 as a driver of global dryland greening. Scientific Reports, 6(1), 20716.Google Scholar
  59. McDaniel, M. D., Tiemann, L. K., & Grandy, A. S. (2014). Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications, 24(3), 560–570.Google Scholar
  60. McMahon, T. A., Halstead, N. T., Johnson, S., Raffel, T. R., Romansic, J. M., Crumrine, P. W., & Rohr, J. R. (2012). Fungicide-induced declines of freshwater biodiversity modify ecosystem functions and services. Ecology Letters, 15(7), 714–722.Google Scholar
  61. Mickelson, S. K., Boyd, P., Baker, J. L., & Ahmed, S. I. (2001). Tillage and herbicide incorporation effects on residue cover, runoff, erosion, and herbicide loss. Soil and Tillage Research, 60(1), 55–66.Google Scholar
  62. Mishra, J. S., & Singh, V. P. (2012). Tillage and weed control effects on productivity of a dry seeded rice–wheat system on a Vertisol in Central India. Soil and Tillage Research, 123, 11–20.Google Scholar
  63. Moore, M. T., Kröger, R., Locke, M. A., Lizotte, R. E., Testa, S., & Cooper, C. M. (2014). Diazinon and permethrin mitigation across a grass–wetland buffer. Bulletin of Environmental Contamination and Toxicology, 93(5), 574–579.Google Scholar
  64. Myers, J. L., Wagger, M. G., & Leidy, R. B. (1995). Chemical movement in relation to tillage system and simulated rainfall intensity. Journal of Environmental Quality, 24(6), 1183–1192.Google Scholar
  65. Nakagawa, S., & Lagisz, M. (2016). Visualizing unbiased and biased unweighted meta-analyses. Journal of Evolutionary Biology, 29(10), 1914–1916.Google Scholar
  66. Ochsner, T. E., Stephens, B. M., Koskinen, W. C., & Kookana, R. S. (2006). Sorption of a hydrophilic pesticide. Soil Science Society of America Journal, 70(6), 1991–1997.Google Scholar
  67. Pantone, D. J., Potter, K. N., Torbert, H. A., & Morrison, J. E. (1996). Atrazine loss in runoff from no-tillage and chisel-tillage systems on a Houston black clay soil. Journal of Environmental Quality, 25(3), 572–577.Google Scholar
  68. Pedersen, J. A., Yeager, M. A., & Suffet, I. H. (2006). Organophosphorus insecticides in agricultural and residential runoff: field observations and implications for total maximum daily load development. Environmental Science & Technology, 40(7), 2120–2127.Google Scholar
  69. Phillips, R. E., Thomas, G. W., Blevins, R. L., Frye, W. W., & Phillips, S. H. (1980). No-tillage agriculture. Science, 208(4448), 1108–1113.Google Scholar
  70. Reddy, K. N., & Locke, M. A. (1998). Sulfentrazone sorption, desorption, and mineralization in soils from two tillage systems. Weed Science, 494-500.Google Scholar
  71. Reddy, K. N., Zablotowicz, R. M., & Locke, M. A. (1995). Chlorimuron adsorption, desorption, and degradation in soils from conventional tillage and no-tillage systems. Journal of Environmental Quality, 24(4), 760–767.Google Scholar
  72. Reddy, K. N., Locke, M. A., & Gaston, L. A. (1997). Tillage and cover crop effects on cyanazine adsorption and desorption kinetics. Soil Science, 162(7), 501–509.Google Scholar
  73. Rice, P. J., McConnell, L. L., Heighton, L. P., Sadeghi, A. M., Isensee, A. R., Teasdale, J. R., Abdul-Baki, A. A., Harman-Fetcho, J. A., & Hapeman, C. J. (2001). Runoff loss of pesticides and soil. Journal of Environmental Quality, 30(5), 1808–1821.Google Scholar
  74. Rinsky, J. L., Hopenhayn, C., Golla, V., Browning, S., & Bush, H. M. (2012). Atrazine exposure in public drinking water and preterm birth. Public Health Reports, 127(1), 72–80.Google Scholar
  75. Sauer, T. J., & Daniel, T. C. (1987). Effect of tillage system on runoff losses of surface-applied pesticides. Soil Science Society of America Journal, 51(2), 410–415.Google Scholar
  76. Sheng, G., Yang, Y., Huang, M., & Yang, K. (2005). Influence of pH on pesticide sorption by soil containing wheat residue-derived char. Environmental Pollution, 134(3), 457–463.Google Scholar
  77. Shipitalo, M. J., & Owens, L. B. (2006). Tillage system, application rate, and extreme event effects on herbicide losses in surface runoff. Journal of Environmental Quality, 35(6), 2186–2194.Google Scholar
  78. Shipitalo, M. J., & Owens, L. B. (2011). Comparative losses of glyphosate and selected residual herbicides in surface runoff from conservation-tilled watersheds planted with corn or soybean. Journal of Environmental Quality, 40(4), 1281–1289.Google Scholar
  79. Shipitalo, M. J., Edwards, W. M., & Owens, L. B. (1997). Herbicide losses in runoff from conservation-tilled watersheds in a corn-soybean rotation. Soil Science Society of America Journal, 61(1), 267–272.Google Scholar
  80. Shipitalo, M. J., Malone, R. W., & Owens, L. B. (2008). Impact of glyphosate-tolerant soybean and glufosinate-tolerant corn production on herbicide losses in surface runoff. Journal of Environmental Quality, 37(2), 401–408.Google Scholar
  81. Spiertz, J. H. J., & Ewert, F. (2009). Crop production and resource use to meet the growing demand for food, feed and fuel: opportunities and constraints. NJAS-Wageningen Journal of Life Sciences, 56(4), 281–300.Google Scholar
  82. Staff, S. S. D. (2017). Soil Survey Manual. In C. Ditzler, K. Scheffe, & H. C. Monger (Eds.), USDA Handbook 18. Washington, D.C.: Government Printing Office.Google Scholar
  83. Stephan, C. E., Mount, D. I., Hansen, D. J., Gentile, J. H., Chapman, G. A., & Brungs, W. A. (1985). Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses (p. 98). Duluth: US Environmental Protection Agency.Google Scholar
  84. Teasdale, J. R., Beste, C. E., & Potts, W. E. (1991). Response of weeds to tillage and cover crop residue. Weed Science, 39(2), 195–199.Google Scholar
  85. Thomas, G. A., Dalal, R. C., & Standley, J. (2007). No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil and Tillage Research, 94(2), 295–304.Google Scholar
  86. Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W. H., Simberloff, D., & Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science, 292(5515), 281–284.Google Scholar
  87. Triplett, G. B., Conner, B. J., & Edwards, W. M. (1978). Transport of atrazine and simazine in runoff from conventional and no-tillage corn. Journal of Environmental Quality, 7(1), 77–84.Google Scholar
  88. United States Department of Agriculture. (2002). World Agricultural Production. Circular Series WAP 08-02. Washington D.C.: USDA–Foreign Agriculture Service.Google Scholar
  89. United States Department of Agriculture. (2016). World Agricultural Production. Circular Series WAP 11-17. Washington D.C.: USDA–Foreign Agriculture Service.Google Scholar
  90. United States Department of Agriculture-Natural Resources Conservation Service. (2016). Residue and Tillage management. USDA–NRCS. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/?cid=nrcs144p2_027311. Accessed 1 December 2016.
  91. United States Environmental Protection Agency. (2016). Aquatic life ambient water quality criteria for carbaryl. EPA/820/R-12/007. Washington, DC: Office of Water, Science and Technology.Google Scholar
  92. University of Hertfordshire, Pesticides Properties Database. (2017). Pesticides properties database. Agriculture & Environment Research Unit (AERU) at University of Hertfordshire. Hertfordshire, UK. http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm. Accessed 1 December 2016.
  93. Warnemuende, E. A., Patterson, J. P., Smith, D. R., & Huang, C. H. (2007). Effects of tilling no-till soil on losses of atrazine and glyphosate to runoff water under variable intensity simulated rainfall. Soil and Tillage Research, 95(1), 19–26.Google Scholar
  94. Watanabe, H., Watermeier, N. L., Steichen, J. M., Barnes, P., & Phong, T. K. (2007). Impacts of tillage and application methods on atrazine and alachlor losses from upland fields. Weed Biology and Management, 7(1), 44–54.Google Scholar
  95. Wauchope, R. D., Buttler, T. M., Hornsby, A. G., Augustijn-Beckers, P. W. M., & Burt, J. P. (1992). The SCS/ARS/CES pesticide properties database for environmental decision-making. In Reviews of environmental contamination and toxicology (pp. 1-155). New York: Springer.  https://doi.org/10.1007/978-1-4612-2862-2_1.
  96. Wik, M., Pingali, P. & Broca, S. (2008). Global agricultural performance: past trends and future prospects. Background paper for the World Development Report. Washington, DC, USA: World Bank. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.697.2420&rep=rep1&type=pdfAccessed 1 December 2016.
  97. World Health Organization. (2002). Genomics and world health: report of the Advisory Committee on Health Research. Geneva: World Health Organization.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Daniel Elias
    • 1
  • Lixin Wang
    • 1
  • Pierre-Andre Jacinthe
    • 1
    Email author
  1. 1.Department of Earth SciencesIndiana University Purdue University IndianapolisIndianapolisUSA

Personalised recommendations